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Abstract Despite the growing popularity of Lattice Boltzmann schemes for describ-
ing multi-dimensional flow and transport governed by non-linear (anisotropic) advection-
diffusion equations, there are very few analytical results on their stability, even for the
isotropic linear equation. In this paper, the optimal two-relaxation-time (OTRT) model is
defined, along with necessary and sufficient (easy to use) von Neumann stability conditions
for a very general anisotropic advection-diffusion equilibrium, in one to three dimensions,
with or without numerical diffusion. Quite remarkably, the OTRT stability bounds are the
same for any Peclet number and they are defined by the adjustable equilibrium parameters.
Such optimal stability is reached owing to the free (“kinetic”) relaxation parameter. Further-
more, the sufficient stability bounds tolerate negative equilibrium functions (the distribution
divided by the local mass), often labeled as “unphysical”. We prove that the non-negativity
condition is (i) a sufficient stability condition of the TRT model with any eigenvalues for the
pure diffusion equation, (ii) a sufficient stability condition of its OTRT and BGK/SRT sub-
classes, for any linear anisotropic advection-diffusion equation, and (iii) unnecessarily more
restrictive for any Peclet number than the optimal sufficient conditions. Adequate choices of
the two relaxation rates and the free-tunable equilibrium parameters make the OTRT sub-
class more efficient than the BGK one, at least in the advection-dominant regime, and allow
larger time steps than known criteria of the forward time central finite-difference schemes
(FTCS/MFTCS) for both, advection and diffusion dominant regimes.
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1 Introduction

Developed for solving the Navier-Stokes equation, [3, 15, 16], then rapidly adapted for
the diffusion equation [7, 35], the Lattice-Boltzmann schemes (LBE) become more and
more popular for solving different problems governed by linear or non-linear, isotropic or
anisotropic advection-diffusion equations (AADE), e.g., [9, 20, 30, 32, 38]. In contrast to the
explicit finite-difference schemes which discretize the AADE in terms of the primary (con-
served) variables, the primary variables of the LBE are populations, and the corresponding
velocity sets implicitly define the discretization stencil. The populations are linearly relaxed
towards prescribed equilibrium distribution, constructed such that the mass (sum) of pop-
ulations is conserved and its evolution obeys, with second-order accuracy, the prescribed
advection-diffusion equation. It is very convenient to examine the LBE schemes with a
central-symmetry argument where all the populations are split into their symmetric and
anti-symmetric components, their values being respectively equal or opposite for any pair
of populations leaving the node in two opposite directions. The two-relaxation-times colli-
sion operator (TRT) [8] is the minimal one which enables individual relaxation rates for the
symmetric and anti-symmetric components. It includes the BGK [25] (or (single-relaxation-
time) SRT model) when the two relaxation rates are the same. All the diffusion coefficients
of the TRT AADE equations are related to the relaxation rate of the anti-symmetric com-
ponents and to (anisotropic) equilibrium mass weights [8, 13, 30]. This is to be contrasted
with the link-wise operators [8, 13, 37] for which anisotropic tensors can be obtained with
isotropic weights and different anti-symmetric relaxation rates. The relaxation parameter of
the symmetric components is free and restricted only by linear stability arguments. While
any user knows that the effective stability of LBE schemes depends on the selected values
of free parameters, the exact dependency is however unknown so far.

The von Neumann stability analysis is suitable for linear LBE schemes, but analytically
tedious in a parameter space spanned by Q populations and d physical (velocity) dimen-
sions. Recent results [29, 31] of numerical von Neumann stability analysis for one and two-
dimensional BGK models suggest that the highest stable Courant number (or lattice velocity
U = u �t

�x
), decreases in the advection limit (when the diffusion coefficient vanishes) but the

BGK model remains stable provided that all equilibrium functions (divided by mass quan-
tity) are kept non-negative. Similar stability analysis of the TRT operator [28] draws a much
more complicated scenario, due to the presence of the free relaxation parameter. A possi-
ble impact of the “kinetic” modes on stability/accuracy was also revealed in reference [34]
for the minimal diffusion model and numerical studies [5, 24] for multiple-relaxation-times
models.

The analytical results of Rheinländer [27] for the simplest advection-diffusion one-
dimensional BGK scheme with two populations (d1Q2) show that this scheme is stable up
to the Courant number U = 1, for any relaxation parameter τ . However, the d1Q2 scheme
is unable to (locally) cancel its numerical diffusion, equal to −U 2, [8, 28]. Suga [31] de-
velops analytical study on the spectrum of the BGK evolution equation for several multi-
dimensional velocity sets, including the d2Q9 schemes for one particular equilibrium, but re-
stricting the BGK model to τ = 1. In fact, this particular scheme (optimal OBGK hereafter)
is equivalent to forward time central finite-difference advection diffusion schemes (FTCS)
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on suitable spatial stencils, e.g., [33]. We will show that the time/space steps stability criteria
of FTCS and (modified) MFTCS (those schemes reduce the numerical diffusion, [17]) can
be directly re-interpreted for the OBGK model, in terms of the equilibrium weights and the
advection velocity U .

In contrast to the dispersion [19], perturbation [26] and structural [2] (and references
herein) approaches for hydrodynamic LBE models, we mainly develop the analytical von
Neumann stability analysis for the TRT AADE schemes. We first show that there exists
the optimal sub-class of the TRT operator which retains the equilibrium stability bounds of
the OBGK for any value of diffusion (anti-symmetric) relaxation parameter, hence, for any
value of grid Peclet number. The OTRT sub-class reaches such an optimal stability when the
product of the two relaxation functions, the so-called “magic” parameter Λ, keeps the value
one fourth, and includes both the OBGK model and the FTCS/MFTCS when both relaxation
rates are equal. The effect of Λ on the accuracy of boundary [4, 14, 23], interface [10] and
overall truncation errors [8, 28] has already been reported. It is also known that all the
coefficients of the infinite Chapman-Enskog steady state expansion are explicitly set [4,
11] as functions of Λ, for the TRT schemes with any eigenvalues and any equilibrium. In
this paper, we prove, for any velocity set, any equilibrium, and any individual values of
the two relaxation times, that Λ = 1

4 reduces the Qth-order characteristic equation of mass-
conserving models to a quadratic one. Then we establish necessary and sufficient bounds for
the Courant number U , for the largest available number of equilibrium degrees of freedom.

There is a common belief, coming certainly from the kinetic interpretation of the LBE,
e.g., [1] that the equilibrium functions must be non-negative. We first derive the generic
sufficient OTRT stability conditions, suitable for any AADE equilibrium. We proof that the
non-negativity condition is stronger, hence it is also sufficient for stability of the OTRT sub-
class. We then show that stable equilibrium parameters partially lie in the domain where
the equilibrium functions of moving populations are negative. Assuming the non-negativity
as necessary condition for the BGK models in the advection limit, the OTRT sub-class
overcomes it in stability, operating (i) with more efficient equilibrium parameters, along with
(ii) more stable eigenvalue functions. Moreover, the d2Q9 velocity set tolerates negative
equilibrium function even for its immobile weight. Altogether, assuming the non-negativity
of equilibrium as a necessary condition puts severe limits on the numerical efficiency of the
LBE, at least for the OTRT AADE schemes.

The paper is organized as follows. Section 2 presents the methodology for the TRT
AADE and (anisotropic) equilibrium distributions for “minimal”, d1Q3, d2Q5, d3Q7, and
“full”, d2Q9 and d3Q15 models. Necessary stability conditions for isotropic tensors in the
advection limit are first derived from the positive semi-definiteness of the diffusion ten-
sor. We show that, similarly to finite-difference schemes and in agreement with numerical
studies [29], the stability of the TRT schemes drastically differs, first, when the diagonal
elements of the second-order tensor are removed (all the schemes with immobile population
reach this), second, when the cross-diagonal numerical diffusion is cancelled (“full” models
only).

Section 3 develops analytical von Neumann stability analysis. More specifically, we
(1) derive characteristic equation of the OTRT sub-class; (2) build the OTRT sufficient sta-
bility conditions; (3) show that the non-negativity condition satisfies them; (4) prove that the
non-negativity condition is sufficient for stability of the TRT pure diffusion equation with no
advection, for any relaxation times; (5) prove that the non-negativity condition is sufficient
for stability of the BGK model for any τ ; (6) derive necessary stability conditions for the
TRT model in diffusion limit: they constrain specific (model dependent) linear combinations
of symmetric equilibrium components to interval [0,1].
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Section 4 works out necessary (all the TRT schemes) and sufficient (only the OTRT sub-
class) conditions for the minimal models. We show that time steps larger than those of the
FTCS/MFTCS can be used for a suitable choice of the equilibrium parameters and eigen-
value functions. Section 5 delineates necessary stability conditions for the d2Q9 and d3Q15
TRT models and prescribes sufficient conditions for several OTRT schemes with interest-
ing equilibrium weights. They are mostly elaborated for isotropic diffusion tensor, but in
the presence of the full anisotropic tensor of numerical diffusion. Section 6 summarizes the
main results of this work and concludes the paper. Some known mathematical results are
given and extended in Appendix A. Appendix B gives the non-negativity conditions for the
equilibrium of the d2Q9 and d3Q15 models with free weights. Appendix C applies the de-
veloped methodology for the derivation of sufficient, then necessary and sufficient, stability
conditions of “full” OTRT schemes.

1.1 Linear Anisotropic Advection-Diffusion Equation

We consider the TRT modeling of the linear anisotropic-advection diffusion equation
(AADE) in d-dimensional space, with the constant advection velocity u and a symmetric
diffusion tensor K = {Kαβ}:

∂t s + u · ∇s =
∑

α,β

Kαβ∂2
αβs, {α,β} = 1, . . . , d. (1)

The problem is well-posed if the diagonal components {Kαα} are non-negative and the dif-
fusion tensor is positive semi-definite (e.g., [13, 17] and references herein). The space trans-
formation, from the rectangular physical grid on the cuboid computational grid is defined via
selection of space steps {�α}. The physical value of one iteration of population update is set
equal to �t . Then the “computational” diffusion tensor K′ = {K ′

αβ} and advective velocity
U = {Uα} are prescribed as:

K ′
αβ = Kαβ

�t

�α�β

, Uα = uα�t

�α

, {α,β} = 1, . . . , d. (2)

We will distinguish “minimal” velocity sets: {d1Q3,d2Q5,d3Q7}, abbreviated dDQ(2D+1)
and “full” sets with two non-zero velocity amplitudes, such as the d2Q9 and d3Q15 schemes.
The immobile (zero velocity) population has index 0. A minimal model has 2 × d non-
zero velocities: cq = {±1α,α = 1, . . . , d}, all parallel to the coordinate axes. The d2Q9
velocity set has four “coordinate” velocities cq = {(±1,0), (0,±1)} and four “diagonal”
velocities cq = {(±1,±1)}. The d3Q15 velocity set has six “coordinate” velocities cq =
{(±1,0,0), (0,±1,0), (0,0,±1)}, and eight “diagonal” velocities cq = {(±1,±1,±1)}.

Each nonzero velocity cq has an opposite one cq̄ = −cq , q = 1, . . . ,Qm, Qm = Q − 1.
Hereafter we call “links” such pairs of anti-parallel velocities (cq , cq̄ ). We assume (without
loss of generality) that the first Qm/2 velocities are anti-parallel to the last ones. When the
symmetric and anti-symmetric equilibrium components: e+

q and e−
q , are prescribed, the TRT

update rule is performed with two relaxation parameters, λ+ and λ−, one for the symmetric
and one for the anti-symmetric non-equilibrium components, n+

q and n−
q , respectively:

fq(r + cq , t + 1) = fq + λ+n+
q + λ−n−

q , (3)

where

n±
q = (f ±

q − e±
q ), and f ±

q = 1

2
(fq ± fq̄). (4)
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The two populations of any link have the same symmetric components whereas their anti-
symmetric components have opposite signs. The immobile population coincides with its
symmetric part. In what follows, we operate with two positive eigenvalue functions Λ− and
Λ+, and their product Λ:

TRT: Λ = Λ−Λ+, Λ± = −
(

1

2
+ 1

λ±

)
, −2 < λ± < 0. (5)

The eigenvalues are restricted by linear stability analysis [15, 16] for any (e.g., zero) equi-
librium function. The BGK model [25] operates with one relaxation parameter, commonly
called τ :

BGK: τ = − 1

λ+ = − 1

λ− , then Λ = Λ+2 = Λ−2 = (2τ − 1)2

4
. (6)

The diffusion coefficients of the derived equations are all proportional to Λ− (see below).
Then Λ+ is a free parameter for all the TRT AADE models, including the BGK operator
when Λ+ = Λ−. The infinite number of combinations {Λ+,Λ−} defines the optimal OTRT
sub-class if their product is equal to 1

4 :

OTRT: Λ = 1

4
, or equivalently:

λ+ + λ− = −2 or λ	 = λ+ + λ−

2
= −1, when − 2 < λ± < 0. (7)

The BGK sub-class intersects the OTRT sub-class only for τ = 1:

OBGK: Λ− = Λ+ = 1

2
, i.e., λ+ = λ− = −1 or τ = 1. (8)

Remark 1.1 We will prove that for any choice of the eigenvalues λ+ and λ−, the OTRT
sub-class has the same stability bounds, which only depend on the equilibrium parameters,
hence they are the same as for the OBGK model. This enables the optimal sub-class to model
advection-diffusion equation with the same equilibrium parameters for any Peclet number.

1.2 Equilibrium Function

1.2.1 General Form

The general form of equilibrium distribution {e±
q } is considered as:

⎧
⎪⎪⎨

⎪⎪⎩

e+
q = sE+

q , s = ∑Qm

q=0 fq, E+
q = E(m)

q + g(u)E(u)
q (U), g(u) ∈ {0,1},

e+
0 = e0 = sE0, E0 = 1 − ∑Qm

q=1 E+
q , e−

0 = 0,

e−
q = sE−

q , E−
q = t (a)

q (U · cq), q = 1, . . . ,Qm.

(9)

The models without rest population are included with E0 ≡ 0 and f0 ≡ 0. In what follows
we refer to {E+

q } as the symmetric weights, assuming q ∈ {1, . . . ,Qm}, and E0 as the “im-
mobile” weight. We also call Eq = {E+

q + E−
q ,E0} the equilibrium weights. A vector in
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Q-dimensional population space is said isotropic when its components have the same value
per velocity class. Isotropic weights tq = t (a)

q are restricted to obey two conditions:

(1) tq ≥ 0 and (2)

Qm∑

q=1

tqcqαcqβ = δαβ, ∀{α,β} ∈ {1, . . . , d}. (10)

Hereafter, δαβ is the Kronecker symbol.

Definition 1.2.1 Let D = {Dαβ} be the symmetric tensor obtained from {K ′
αβ}, and ce be

the arithmetic mean of its diagonal elements:

Dαβ = K ′
αβ

Λ− = Kαβ�t

Λ−�α�β

, and ce =
∑d

α=1 Dαα

d
=

∑d

α=1 K ′
αα

dΛ− . (11)

When K′ is isotropic then

Dαβ = ceδαβ, ce ≥ 0, ∀{α,β} ∈ {1, . . . , d}. (12)

The set {E(m)
q } solves the following linear system of equations, [8, 13] :

Dαβ =
Qm∑

q=1

E(m)
q cqαcqβ . (13)

The TRT operator needs an anisotropic set {E(m)
q } for any anisotropy of the diffusion ten-

sor. The set {E(m)
q } is specified below for the minimal, d2Q9 and d3Q15 velocity sets (re-

lations (16), (21) and (24), respectively). In the presence of advection (U �= 0), the full
(second-order accurate) tensor D(num) of numerical diffusion is:

D(num)
αβ = −UαUβ, ∀{α,β} ∈ {1, . . . , d}. (14)

Then the effective diffusion tensor D(eff ) is:

D(eff )
αβ = D+

αβ + D(num)
αβ ,

D+
αβ =

Qm∑

q=1

E+
q cqαcqβ = Dαβ + g(u)

Qm∑

q=1

E(u)
q cqαcqβ . (15)

The equilibrium term E(u)
q removes D(num), partially or completely, when g(u) = 1.

For convenience, we separate the non-negativity and stability conditions into four specific
groups, using notation U 2 = ∑d

α=1 U 2
α hereafter.

Definition 1.2.1.A We refer to function U 2
d (ce), ce ∈ [0, c(0)

e ], such that E0(ce,U
2
d ) = 0 and

U 2
d (ce = c(0)

e ) = 0 as the E0-non-negativity line or E0-n-line. Then E0 ≥ 0 if U 2 ≤ U 2
d (ce)

and ce ∈ [0, c(0)
e ].

Definition 1.2.1.B We refer to (minimal value) function U 2
n (ce) where at least one of the

moving weights Eq is equal to zero as the non-negativity line or n-line. Then {Eq > 0},
q = 1, . . . ,Qm, if U 2 ≤ U 2

n (ce).
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Definition 1.2.1.C We refer to (minimal value) function U 2
a (ce) obtained as a necessary

stability limit when the effective diffusion coefficients vanish as the advection line or a-line.

Definition 1.2.1.D We refer to (minimal value) functions {U 2
d,1(ce),U

2
d,2(ce), . . .} obtained

as necessary stability bounds in the diffusion-dominant limit (where the impact of {E−
q }

vanishes) as the diffusion lines or d-lines. We denote as c(max)
e the (minimal value) ce > 0

where at least one of d-lines is equal to zero.

1.2.2 Minimal Models: d1Q3, d2Q5 and d3Q7

Their equilibrium parameters (9) are:

⎧
⎨

⎩
E(m)

q = 1
2 Dαα, t (a)

q = 1
2 , E(u)

q = U2
α

2 if cqα �= 0, q = 1, . . . ,Qm,

E0 = 1 − dce − g(u)U 2.
(16)

As an example, the effective diffusion tensor (15) of the d2Q5 takes the form:

D(eff ) =
(

Dxx + (g(u) − 1)U 2
x −UxUy

−UxUy Dyy + (g(u) − 1)U 2
y

)
. (17)

This model describes anisotropic diagonal elements Dxx �= Dyy with Eq = 1
2 Dxx and

Eq = 1
2 Dyy for the links along the x- and y-axes, respectively. However, neither the d2Q5

nor the d3Q7 model with local equilibrium is able to set nonzero off-diagonal elements:
Dxy or {Dxy, Dxz, Dyz}. Hence, they cannot locally remove the off-diagonal elements of the
numerical diffusion: −UαUβ , α �= β . The set {E+

q = E(m)
q + g(u)E(u)

q } becomes for isotropic
tensor (12):

E+
q = 1

2

(
ce + g(u)

d∑

α=1

U 2
αc2

qα

)
, q = 1, . . . ,Qm. (18)

Remark 1.2.2.A The TRT AADE minimal models are specified with two independent
groups of parameters: (1) a triplet {ce,Λ

−,U}, with ce ≥ 0 and Λ− ≥ 0 (when strictly posi-
tive, they are related to the grid Peclet number by Pe�x = |U|

ceΛ− ), and (2): a free eigenvalue
function Λ+ ≥ 0.

Immobile Weight Immobile weight E0 is given by relation (16), either for isotropic or
anisotropic diffusion tensor. The non-negativity conditions for E0 are:

U ≡ 0 or g(u) = 0: E0 ≥ 0 if 0 ≤ ce ≤ c(0)
e = 1

d
.

g(u) = 1: E0 ≥ 0 if 0 ≤ U 2 ≤ U 2
d = 1 − dce, 0 ≤ ce ≤ c(0)

e . (19)

Remark 1.2.2.B We will prove that these conditions are necessary diffusion-dominant sta-
bility conditions of the minimal models.
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1.2.3 “Full” Velocity Sets: d2Q9 and d3Q15

They describe full anisotropic symmetric tensors with the help of their diagonal links [8, 13]
and completely remove D(num) if:

Qm∑

q=1

E+
q cqαcqβ = Dαβ − D(num)

αβ when g(u)g
(u)
αβ = 1. (20)

Definition 1.2.3.A Let us distinguish three situations:

(1) The numerical diffusion is not cancelled. We will refer to as g(u) = 0.
(2) Only the diagonal elements of numerical diffusion are cancelled. We will refer to as

g(u) = 1, or g(u) = 1 and g
(u)
αβ = 0, assuming all possible α �= β .

(3) The whole tensor D(num) is cancelled. We will refer to as g
(u)
αβ g(u) = 1, or g(u) = 1 and

g
(u)
αβ = 1, assuming all possible α �= β .

The minimal models can only reach the two first configurations. The d2Q9 model
achieves all of them prescribing the equilibrium (9) for q = 1, . . . ,Qm as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d2Q9: E+
q = E(m)

q + g(u)E(u)
q (U), E(m)

q = t (m)
q ce + E(a)

q , where

E(u)
q (U) = t (u)

q
U2

2 + U2
x −U2

y

4 p(xx)
q + g(u)

xy

UxUy

4 p
(xy)
q ,

E(a)
q = Dxx−Dyy

4 p(xx)
q + Dxy

4 p
(xy)
q ,

with p(xx) = {p(xx)
q = c2

qx − c2
qy}, p(xy) = {p(xy)

q = cqxcqy}.

(21)

We restrict the three families of weights: {t (m)
q }, {t (a)

q }, and {t (u)
q } be non-negative, isotropic,

and satisfy relation (10). Hence, there exists a single degree of freedom per family of
weights, e.g., if the “coordinate” weight tc is selected, then the diagonal weight td is:

d2Q9: td = 1 − 2tc

4
, 0 ≤ tc ≤ 1

2
, tq = {t (m)

q , t (a)
q , t (u)

q }. (22)

The effective tensor of the d2Q9 schemes is:

D(eff ) =
(

Dxx + (g(u) − 1)U 2
x Dxy + (g(u)

xy g(u) − 1)UxUy

Dxy + (g(u)
xy g(u) − 1)UxUy Dyy + (g(u) − 1)U 2

y

)
. (23)

Similarly, we specify equilibrium function (16) for moving populations of the d3Q15 model
as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3Q15: E+
q = E(m)

q + g(u)E(u)
q (U), E(m)

q = t (m)
q ce + E(a)

q , q = 1, . . . ,Qm,

E(u)
q (U) = t (u)

q
U2

3 + 2U2
x −(U2

y +U2
z )

12 p(xx)
q + U2

y −U2
z

4 p(ww)
q

+ ∑
(α �=β) g

(u)
αβ

UαUβ

8 p(αβ)
q ,

E(a)
q = 2Dxx−(Dyy+Dzz)

12 p(xx)
q + Dyy−Dzz

4 p(ww)
q + ∑

(α �=β)

Dαβ

8 p(αβ)
q ,

p(xx)
q = 2c2

qx − (c2
qy + c2

qz), p(ww)
q = c2

qy − c2
qz, p(αβ)

q = cqαcqβ, α �= β.

(24)
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Here,
∑

(α �=β) includes each component only once, e.g., {αβ} = {(xy), (yz), (xz)}. Again,
the non-negative and isotropic weights {t (m)

q }, {t (a)
q } and {t (u)

q } satisfy relation (10) such that:

d3Q15: td = 1 − 2tc

8
, 0 ≤ tc ≤ 1

2
, t = {t (m), t (a), t (u)}. (25)

We parametrize the non-negative weights {t (u)} with the free parameter γu:

d2Q9: t (u)
c = 1 + 2γu

6
, t

(u)
d = 1 − γu

6
, −1

2
≤ γu ≤1,

d3Q15: t (u)
c = γu

2
, t

(u)
d = 1 − γu

8
, 0 ≤ γu ≤ 1.

(26)

When γu = 1 (or, γu = − 1
2 (d2Q9) and γu = 0 (d3Q15)) then the isotropic U 2-component

of E(u)
q is completely “absorbed” by the coordinate, or, respectively, diagonal links.

Remark 1.2.3.A The d2Q9 and d3Q15 schemes reduce to the d2Q5 and d3Q7 schemes,
respectively, when

t (m)
c = t (a)

c = t (u)
c = 1

2
and Dαβ = 0, g

(u)
αβ ≡ 0, ∀{α �= β}. (27)

Remark 1.2.3.B On top of the parameters of the minimal models: {Λ−, ce,U
2} and Λ+, the

“full” models have three additional degrees of freedoms which are related to the distribution
of weights between the two velocity classes. Any suitable choice of weights is equivalent
for the second order equations. However, as we show below, different weight combinations
may give very different stability bounds.

Remark 1.2.3.C The equilibrium commonly used for isotropic diffusion tensors, hereafter
called “standard” form, is prescribed (a): with both {t (m)

q } and {t (a)
q } equal to the “hy-

drodynamic” isotropic weights {t	q } (they obey additional constraint (28)) and (b): with
{E(u)

q } = {E	
q}, for q = 1, . . . ,Qm:

E	
q = t	q

2
(3(U · cq)

2 − U 2), 3
Qm∑

q=1

t	q c
2
qαc

2
qβ = 1, ∀α �= β, (28)

then

d2Q9: t	c = 1

3
, t	d = 1

12
, and d3Q15: t	c = 1

3
, t	d = 1

24
. (29)

Definition 1.2.3.B The “standard” form (28)–(29) is defined with:

d2Q9(stan),d3Q15(stan): t (m)
c = t (a)

c = 1

3
, γu = 0. (30)

Immobile Weight The weight E0 is independent of the anisotropy and takes the form:

d2Q9: E0 = 1 − ce(1 + 2t (m)
c ) − g(u)(2 + γu)

U 2

3
, (31)
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d3Q15: E0 = 1 − ce(1 + 4t (m)
c ) − g(u)(1 + 2γu)

U 2

3
. (32)

Then E0 ≥ 0 when U 2 ≤ U 2
d (ce) and the E0-n-line functions U 2

d (ce) are defined as:

d2Q9: U 2
d = 3

2 + γu

(
1 − ce

c
(0)
e

)
, 0 ≤ ce ≤ c(0)

e = 1

1 + 2t
(m)
c

, (33)

d3Q15: U 2
d = 3

1 + 2γu

(
1 − ce

c
(0)
e

)
, 0 ≤ ce ≤ c(0)

e = 1

1 + 4t
(m)
c

. (34)

Remark 1.2.3.D Sufficient conditions for the mass weights have been proposed by Banda
et al. [2] in the frame of the BGK Navier-Stokes equation and U = 0. One can re-interpret
them for the d2Q9 and d3Q15 schemes such that E0 ≥ 0 when t (m)

c = 1
3 (“standard” choice).

Remark 1.2.3.E The condition E0 ≥ 0 is given by relations (19), (33) and (34) for the mini-
mal models, d2Q9 and d3Q15 schemes, respectively. When U = 0 or g(u) = 0, this condition
restricts ce to the interval [0, c(0)

e ], where, respectively, c(0)
e = { 1

d
, 1

1+2t
(m)
c

, 1

1+4t
(m)
c

}. The “full”

models yield the largest interval [0, c(0)
e ] for t (m)

c = 0, then c(0)
e = 1, and the smallest one

for t (m)
c = 1

2 , then c(0)
e = 1

d
, d = 2 and d = 3. Then E0 ≥ 0 in the interval [0, 1

d
] for all the

models. The analysis of the diffusion-dominant conditions will prescribe E0 ≥ 0 as a neces-
sary condition for the minimal and d3Q15 models, but not for the d2Q9 schemes. Moreover,
the sufficient stability conditions obtained for the d2Q9 OTRT schemes will not respect the
non-negativity of the immobile weight, in general.

1.3 Advection-Dominant Stability Constraints

Necessary stability conditions in the advection limit (Dαβ → 0) can be directly derived from
the condition that the effective diffusion tensor D(eff ) is positive semi-definite. As a basic
example, let us compute det[D(eff )] in the isotropic case (12):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(u) = 0, d ∈ {1,2,3} : det[D(eff )] = cd−1
e (ce − U 2),

g(u) = 1, d = 2 : det[D(eff )] = c2
e − U 2

x U 2
y ,

g(u) = 1, d = 3 : det[D(eff )] = c3
e − 2U 2

x U 2
y U 2

z

− ce(U
2
y U 2

z + U 2
x U 2

y + U 2
x U 2

z ).

(35)

The following conditions guarantee the non-negativity of det[D(eff )] for any direction of
velocity vector U:

⎧
⎪⎨

⎪⎩

g(u) = 0, d ∈ {1,2,3} : U 2 ≤ U 2
a,0 = ce,

g(u) = 1, d = 2 : U 2 ≤ U 2
a,1 = 2ce,

g(u) = 1, d = 3 : U 2 ≤ U 2
a,2 = 3

2ce.

(36)

When D(num) is completely cancelled, e.g., for the d1Q3, d2Q9 or d3Q15 velocity sets, then
the effective diffusion tensor is equal, at the second order, to the modeled tensor:

g
(u)
αβ g(u) = 1 : D(eff ) = D. (37)

Hence D(eff ) is positive semi-definite and the necessary advection-dominant conditions are
prescribed by the effective high-order velocity corrections to D(eff ).
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Remark 1.3 Conditions (36) are necessary for all models, they define the a-lines (see Defi-
nition 1.2.1.C). When the numerical diffusion is removed, the velocity components are not
restricted by the second-order analysis in the advection limit which only prescribes ce ≥ 0
as the stability boundary for isotropic tensors (cf. relation (37)). Moreover, the advection
limit is only a subset of all the necessary stability conditions. The linear von Neumann sta-
bility analysis gives necessary and sufficient stability bounds for periodic solutions of the
evolution equation. They are also necessary for any other boundary conditions.

2 Von Neumann Stability Analysis

In this section, we first present two different but equivalent forms for the TRT characteristic
equation assuming the generic AADE equilibrium form (9). We then develop several gen-
eral results which are valid for any velocity set. They concern: (1) distinguished stability
properties of the OTRT sub-class, (2) its sufficient stability conditions for any equilibrium,
(3) the sufficiency of positivity of the whole equilibrium set {Eq = eq/s = E+

q + E−
q } for

stability of the OTRT sub-class, (4) the sufficiency of positivity of the whole set {Eq = E+
q }

for the stability of the pure diffusion equation (when U = 0, hence E−
q ≡ 0), for any val-

ues of the two relaxation rates, (5) the sufficiency of positivity of the whole equilibrium set
{Eq} for the stability of the BGK AADE model at any τ , (6) the derivation of necessary
stability conditions in the diffusion-dominant regime. These results are illustrated with sim-
ple examples, then worked out for all the models considered in Sects. 3 and 4 along with
Appendices B and C.

2.1 Characteristic Equation

Von Neumann stability analysis is based on the Fourier transform of the evolution equa-
tion (3). Plugging there Fourier modes, fq(r, t) = �t Fq exp(ir · k), k = {kx, ky, kz}, −π <

kα < π , the amplification factor � satisfies Qth-order characteristic equation of the evolu-
tion matrix L:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

det |L − �I| = 0, L = K(−1) · [I + C], with

C0j = λ+(δ0j − E0), ∀j = 0, . . . ,Qm,

Cqj = λ+(
δqj +δq̄j

2 − E+
q ) + λ−(

δqj −δq̄j

2 − E−
q ),

K(−1)
q,j = exp{−ikq}δqj , kq = (k · cq), {q, j} = 0, . . . ,Qm.

(38)

The model is stable in von Neumann sense, e.g. [22], if for all the roots � ∈ {�q}:
|�| ≤ 1, ∀k, ∀� ∈ {�q}, q = 0, . . . ,Qm. (39)

Let us now divide the populations by the local mass quantity s, assuming s �= 0, then we
define: F±

q (r, t) = F ±
q /s. This set solves the (reduced by s) TRT evolution equation:

�(F+
q + F−

q )eikq = (1 + λ+)F+
q + (1 + λ−)F−

q − λ+E+
q − λ−E−

q ,

q = 0, . . . ,Qm. (40)

Taking into account that F+
q and E+

q are equal for two anti-parallel velocities, and F−
q

and E−
q have opposite signs, with F−

0 = E−
0 = 0, the solution of (40) takes the form (with



Optimal Stability of Advection-Diffusion Lattice Boltzmann Models 1101

q = 1, . . . ,Qm):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F+
0 = E0λ+

1+λ+−�
,

F+
q = [(1 − � cos[kq ] + λ−)λ+E+

q + i� sin[kq ]λ−E−
q ]zq,

F−
q = [(1 − � cos[kq ] + λ+)λ−E−

q + i� sin[kq ]λ+E+
q ]zq,

zq = [�2 − � cos[kq ](2 + λ+ + λ−) + (1 + λ−)(1 + λ+)]−1.

(41)

Definition 2.1.1 We define the Qth-order TRT characteristic equation:

Qm∑

q=0

F+
q = F+

0 + 2
Qm/2∑

q=1

F+
q = 1, (42)

where F+
q are defined by relations (41).

Remark 2.1.A An interesting property of the TRT characteristic equation is that the product
of its Q roots, �

Qm

q=0�q , given by the constant term of the characteristic equation, is:

�
Qm

q=0|�q | = |�Qm

q=0�q | = |1 + λ+|Qm
2 |1 + λ−|Qm

2 , ∀E+
q , ∀E−

q , (43)

Therefore, the product of roots is independent of the equilibrium parameters.

2.2 Optimal Sub-Class (OTRT)

The coefficients of the characteristic equation, then the stability bounds of the TRT operator,
generally depend on:

1. {E+
q }, then on {Dαβ} and UαUβ (when g(u) = 1);

2. {E−
q }, then on U;

3. λ−, then on Λ−;
4. λ+, then on Λ+.

We prove below that the OTRT sub-class sets stability condition (39) with relations (45)–
(46), then they only depend on the parameters of {E+

q } and {E−
q }.

2.2.1 The Characteristic Equation on the OTRT Sub-class

Lemma 2.2.1 Let λ+ + λ− = −2, then any root � of (42) satisfies equation P (2)(�) = 0,
where

P (2)(�) = �2 − �((1 + p)A − i(1 − p)B) + p, p = 1 + λ−, (44)

and A(k) and B(k) are defined as:

A = E0 +
Qm∑

q=1

cos[kq ]E+
q , and B =

Qm∑

q=1

sin[kq ]E−
q . (45)

Proof of Lemma 2.2.1 When λ+ +λ− = −2 then all the zq in relation (41) are equal and the
characteristic equation (42) becomes: P (2)(�) = 0. �
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Theorem 2.2.1 Let λ+ + λ− = −2, −2 < λ± < 0, and � be any root of (42). Then condi-
tions: |�| ≤ 1, ∀k, � ∈ {�q,q = 0, . . . ,Qm}, is equivalent to

A2 + B2 ≤ 1, ∀k, (46)

where A and B are defined by relations (45).

Proof of Theorem 2.2.1 From Lemma 2.2.1, the stability bounds are set by the roots of
P (2)(�). For λ± ∈] − 2,0[ this polynomial satisfies the conditions of the Miller’s Theorem
6.1 [21]: |P (2)(0)| = |p| = |1 +λ−| < 1 = |P̃ (2)(0)| (see relations (113)). The reduced poly-
nomial (113) is P (1)(�) = (� − (A − iB))(1 − p2). Since P (1)(�) has equivalent stability
properties then the condition |�|2 ≤ 1 is set by relation (46), which is equivalent to the case
p = 0 of the original equation P (2)(�) = 0. �

Remark 2.2.1.A Theorem 2.2.1 tells us that the stability bounds of the OTRT sub-class are
set by the magnitude of the roots:

� = A ± iB, (47)

where A and B only depend on the equilibrium parameters via relations (45). Using ±i does
not change |�|2 but corresponds to the two equivalent solutions of the evolution equation:
fq(r, t) = �t Fq exp(ir · (±k)).

Remark 2.2.1.B The remarkable property of the OTRT sub-class is that its (equilibrium)
stability bounds are the same for any value of the grid Peclet number Pe�x . When ce and
U(ce) are chosen, then any Pe�x can be adjusted with a suitable choice of the eigenvalue
function Λ−. All the elements of the optimal sub-class have then the same stability bounds as
the OBGK model (p = 0). The characteristic equation of the OBGK model is equivalent to
forward time central finite difference schemes with equivalent spatial stencils. We compare
the relative efficiency of these schemes and OTRT sub-class in Sect. 3.3.

Examples 2.2.1 In the limit k → 0, the series for |�|2 = A2 + B2 takes the following form
when the diffusion tensor (12) is isotropic:

⎧
⎪⎪⎨

⎪⎪⎩

g(u) = 0 : |�|2 = 1 − ce

∑d

α=1 k2
α + (

∑d

α=1 Uαkα)
2+O(k4),

g(u) = 1 : |�|2 = 1 − ce

∑d

α=1 k2
α + ∑

α �=β UαUβkαkβ + O(k4),

g
(u)
αβ g(u) = 1 : |�|2 = 1 − ce

∑d

α=1 k2
α + O(k4).

(48)

The necessary conditions (36) follow from these relations. When g(u) = 0, then, necessarily,
U 2 ≤ ce , ∀ U when k is parallel to U. When g(u) = 1, and U and k are along the diagonal,
U 2

α = U2

d
and k2

α = k2

d
, then |�|2 = 1 − cek

2 + k2U 2(d − 1)/d + O(k4), and, necessarily,
U 2 ≤ d

d−1ce , d > 1. Hence, the limits are the same for the d2Q5 and d2Q9 models: U 2 ≤ 2ce ,
and for the d3Q7 and d3Q15 models: U 2 ≤ 3

2 ce , unless the d2Q9 and d3Q15 models cancel

the numerical cross-diffusion. Then, when g
(u)
αβ g(u) = 1, the only k2-restriction is ce ≥ 0.

2.3 Sufficient Stability Conditions on the OTRT Sub-class

We derive the OTRT sufficient stability conditions valid for modeling of the mass-
conservation equation with equilibrium (9).
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2.3.1 Sufficient Equilibrium Condition

Theorem 2.3.1 Let � = A ± iB where A and B are related to equilibrium components
{E−

q } and {E+
q } via relations (45). Then |�|2 ≤ 1, ∀ k, if {E−

q } and {E+
q } satisfy condi-

tions (49-1) and (49-2):
⎧
⎨

⎩

(1) E0 ≥ 0 and E+
q > 0, q = 1, . . . ,Qm,

(2) 0 ≤ ∑Qm

q=1
(E−

q )2

E+
q

≤ 1.
(49)

The proof of this theorem is inspired by techniques [17].

Proof of Theorem 2.3.1

|�|2 = A2 + B2 =
(

Qm∑

q=0

cos[kq ]E+
q

)2

+
(

Qm∑

q=1

sin[kq ]E−
q

)2

. (50)

When conditions (49-1) and (49-2) are satisfied, using Corollaries A.1.B and A.1.C with
aq = E−

q it comes

|�|2 ≤ 1 −
(

1 −
Qm∑

q=1

(E−
q )2

E+
q

)(
Qm∑

q=1

E+
q sin2[kq]

)
≤ 1,

using
∑Qm

q=1 E+
q sin2[kq ] ≤ ∑Qm

q=1 E+
q ≤ 1 when (49-1) is satisfied. �

Remark 2.3.1.A The theorem formally rules out E+
q = 0. However, when E−

q = 0 and E+
q ≥

0, the theorem is still valid (see Remark A.1.B). This includes the pure diffusion, E−
q ≡ 0,

∀q , then B2 ≡ 0 and the non-negativity of symmetric weights gives the sufficient OTRT
condition. Theorem 2.4 extends this result for the TRT modeling of pure diffusion equation.

Remark 2.3.1.B The theorem enables the derivation of stability bounds from prescribed
equilibrium distributions. This avoids the analysis of � for all possible k. Based upon The-
orem 2.3.1, the sufficient conditions are worked out for all models considered in Sects. 3
and 4.

Examples 2.3.1 Let us consider the isotropic diffusion tensors (12) when the numeri-
cal diffusion is not cancelled (g(u) = 0) and t (m)

q = t (a)
q . Then E+

q = t (a)
q ce and E−

q =
t (a)
q

∑d

α=1 Uαcqα , with t (a)
q = 1

2 for dDQ(2D+1). We rule out the links with t (a)
q = 0 and

take into account relation (10). Then

Qm∑

q=1

(E−
q )2

E+
q

= 1

ce

Qm∑

q=1

t (a)
q

(
d∑

α=1

Uαcqα

)2

= 1

ce

d∑

α=1

U 2
α

Qm∑

q=1

t (a)
q c2

qα = U 2

ce

. (51)

The conditions of Theorem 2.3.1 are satisfied when E0 = (1 − ∑Qm

q=1 t (m)
q ce) ≥ 0. The suffi-

cient conditions of the OTRT sub-class become for all the models:

g(u) = 0: U 2 ≤ U 2
a,0 = ce and 0 ≤ ce ≤ c(0)

e = 1
∑Qm

q=1 t
(m)
q

. (52)
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Fig. 1 The stable triangles are shown for the minimal OTRT models: d1Q3 (large), d2Q5 (middle) and
d3Q7 (small). Left: with numerical diffusion, g(u) = 0, the a-line is U2 = ce and the E0-n-line is ce = 1

d
,

the available interval is ce ∈ [0, c
(0)
e = 1

d
]. Right: the diagonal numerical diffusion is removed, g(u) = 1.

The a-line and d-line become, respectively, U2 = dce
d−1 , d ≥ 2 and U2 = 1 − dce . These stability bounds are

specified by relations (52) and (71) for g(u) = 0 and relations (73) for g(u) = 1. The “best” stability domains
are the two large triangles for the d1Q3 model (cf. relations (74))

Fig. 2 The sufficient stability bounds (76) are plotted for the minimal OTRT models as Cr = |U| function of

Pe∗
�x = |U|

ce
. The numerical diffusion is not removed on the left picture (g(u) = 0), and its diagonal elements

are removed on the right one (g(u) = 1). The stable domain is below the curve, d1Q3: solid, d2Q5: dashed,
d3Q7: dotted. The small Pe∗

�x values are bounded by the (increasing) E0-n-line; the large Pe∗
�x values are

bounded by the (decreasing) a-line. The a-line has the same form when g(u) = 0 (solid) and it vanishes for
the d1Q3 when g(u) = 1. Using the OTRT sub-class, these bounds are valid ∀Λ− > 0 (hence, for all grid
Peclet numbers Pe�x = Pe∗

�x/Λ−)

Two stability conditions [31] for the d2Q4 and d2Q9 schemes are matched when ce = 1
2

and ce = 1
3 , respectively.

Remark 2.3.1.C It follows that the necessary condition (36) is also sufficient for the
OTRT sub-class when ce is restricted to the interval [0, c(0)

e ], g(u) = 0 and the equilibrium
mass/velocity weights are equal: t (m)

q = t (a)
q , at least. The sufficient conditions for U 2(ce) are

illustrated in Fig. 1. They are replotted for Cr(Pe∗
�x) in Fig. 2 (the notations of [29] have

been adapted for convenience, the Courant number Cr is equal to |U| and Pe∗
�x = Pe�xΛ

−).

2.3.2 Non-negativity of the Equilibrium Set {Eq = E+
q + E−

q }: Sufficient Stability
Condition for the OTRT Sub-class

It is easy now to show that the positivity of the whole equilibrium set {Eq}, along with
E0 ≥ 0, necessarily implies Theorem 2.3.1.
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Lemma 2.3.2 Let E0 ≥ 0 and {Eq = E+
q + E−

q > 0} for ∀q = 1, . . . ,Qm then condi-
tions (49) are satisfied.

Proof of Lemma 2.3.2 Let us consider the pairs of opposite velocities, with Eq = E+
q ±E−

q .
It follows that, if Eq > 0, then E+

q > 0 ∀ q , hence condition (49-1) is satisfied. Also Eq ≥ 0
implies (E−

q )2 ≤ (E+
q )2, then

0 ≤
Qm∑

q=1

(E−
q )2

E+
q

≤
Qm∑

q=1

E+
q = (1 − E0) ≤ 1. (53)

The last inequality follows from the assumption E0 ≥ 0. �

Remark 2.3.2.A Lemma 2.3.2 can be extended to Eq ≥ 0 when E−
q = 0 and E+

q ≥ 0, then

the corresponding link does not contribute to
∑Qm

q=1
(E−

q )2

E+
q

.

Remark 2.3.2.B Lemma 2.3.2 proves that the non-negativity of equilibrium presents
stronger sufficient stability conditions for the OTRT sub-class than sufficient conditions
from Theorem 2.3.1.

Examples 2.3.2 Let us consider again an example of isotropic diffusion tensor when g(u) = 0
and t (m)

q = t (a)
q , both weights differ from {0, 1

2 } for “full” models. Then the non-negativity is
guaranteed for all “moving” weights and E0 if:

g(u) = 0,minimal models: U 2 ≤ U 2
n = c2

e , 0 ≤ ce ≤ c(0)
e = 1

d
.

g(u) = 0,d2Q9&d3Q15: U 2 ≤ U 2
n = c2

e

d
, 0 ≤ ce ≤ c(0)

e . (54)

The first (minimal) condition is reached when U is parallel to one of the coordinate axes.
The “full” models reach the minimal velocity on the diagonal links when U is parallel to
a diagonal lattice direction. Obviously, relations (54) are stronger than relations (52), this
confirms Lemma 2.3.2. The non-negativity conditions are illustrated in Fig. 3 for minimal
models and re-plotted in Fig. 4 for Cr(Pe∗

�x). Further details can be found in Sect. 3.2.

2.4 Non-negativity of Equilibrium Set {E+
q }: Sufficient Stability Condition of the TRT

Model for Pure Diffusion Equation

We refer to AADE as pure diffusion equation when u ≡ 0. Our goal is to prove that the
non-negativity of all symmetric weights {E+

q }, together with E0 ≥ 0, is a sufficient stability
condition for any TRT diffusion scheme when the eigenvalues are found in their stability
interval.

Theorem 2.4 Let � be any root of (42) when E−
q ≡ 0 for all q and −2 ≤ λ± ≤ 0. Then

condition |�| ≤ 1 is satisfied provided that E0 ≥ 0 and E+
q > 0, q = 1, . . . ,Qm.
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Fig. 3 The non-negativity domains where {Eq ≥ 0, q = 1, . . . ,Qm} and E0 > 0 are shown for the min-
imal models when g(u) = 0 (left) and g(u) = 1 (right), d1Q3: large (solid boundary), d2Q5: middle-size,
(dashed boundary), and d3Q7: smallest (dotted boundary). The non-negativity lines, n-line and E0-n-line,
are predicted by relations (54) and (78) (with Dmin = ce for isotropic tensors)

Fig. 4 The non-negativity conditions (79) of the minimal models are plotted in the {Cr,Pe∗
�x } plane for

g(u) = 0 (left) and g(u) = 1 (right), Pe∗
�x = |U|

ce
. The non-negativity domain for g(u) = 0 is below the

E0-n-line Cr = Pe∗
�x
d

whereas the n-line is vertical, Pe∗
�x = 1. The non-negativity domain for g(u) = 1

is between the n-line (the common solid (lower) line) and the E0-n-line, d1Q3: solid, d2Q5: dashed, and
d3Q7: dotted

Proof of Theorem 2.4 We substitute E−
q ≡ 0 and multiply each equation (40) by its complex

conjugate. Dividing then the obtained relations by E+
q , their sum yields:

|�|2
(

Qm∑

q=0

|F+
q |2

E+
q

+
Qm∑

q=1

|F−
q |2

E+
q

)

= −λ+(2 + λ+) + (1 + λ+)2
Qm∑

q=0

|F+
q |2

E+
q

+ (1 + λ−)2
Qm∑

q=1

|F−
q |2

E+
q

. (55)

We have taken into account that

(a) opposite populations have equal E+
q and F+

q components,
(b) opposite populations have opposite F−

q components,
(c) E+

q ∈ �, F+
q + F+

q

	 = 2�(F+
q ) if F+

q

	 is the complex conjugate of F+
q ,

(d) and
∑Qm

q=0 �(F+
q ) = ∑Qm

q=0 E+
q = 1.
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Since E+
0 ≡ 0 implies F+

0 ≡ 0, these terms do not appear in the sums and the models without
rest population are included in relation (55). This relation can be rewritten as

(1 − |�|2)
(

Qm∑

q=0

|F+
q |2

E+
q

+
Qm∑

q=1

|F−
q |2

E+
q

)

= −λ+(2 + λ+)

(
Qm∑

q=0

|F+
q |2

E+
q

− 1

)
− λ−(2 + λ−)

Qm∑

q=1

|F−
q |2

E+
q

. (56)

Using Corollary A.1.A with aq = |F+
q |2 and Eq = E+

q , the right-hand side of relation (56)
is non-negative, the term multiplying (1 − |�|2) is also non-negative, hence |�|2 ≤ 1, �

Remark 2.4.A Theorem 2.4 extends for models without rest population where E0 ≡ 0. Also,
if E+

q = E−
q ≡ 0 then F+

q = F−
q ≡ 0 in relation (41), and those links are ruled out from the

above consideration.

Remark 2.4.B In fact, the “unconditional stability” of the LBE diffusion schemes, e.g., [34],
means that any diffusion coefficient can be modeled for any value of the time step �t , owing
to the freedom in the selection of Λ−, provided that all the symmetric weights, {E+

q } and
E0, are positive.

2.5 Non-negativity of the Equilibrium Set {Eq = E+
q + E−

q }: Sufficient Stability Condition
for the BGK Model

We aim to prove that the non-negativity of all equilibrium distributions {Eq} (since their
sum is equal to 1, at least one is strictly positive) is a sufficient stability condition for any
BGK model with a mass-conservation equation.

Theorem 2.5 Let � be any root of system (40) when λ+ = λ−. Then condition |�| ≤ 1 is
satisfied provided that Eq ≥ 0, for all q = 0, . . . ,Qm.

Proof Taking both eigenvalues equal to λ−, equation (40) becomes:

�Fqe
ikq = (1 + λ−)Fq − λ−Eq, with

Qm∑

q=0

�(Fq) =
Qm∑

q=0

Eq = 1. (57)

If Eq = 0 for some q , then from (57) either � = (1 + λ−)e−ikq , then |�| ≤ 1, or � �=
(1 + λ−)e−ikq , then Fq = 0 and the summations in (57) can be restricted to the q such that
Eq > 0. Multiplying all (57) with Eq > 0 by their complex conjugate, then dividing by Eq

and taking their sum, we obtain:

|�|2 X = −λ−(2 + λ−) + (1 + λ−)2 X ,

where

X =
∑

q:Eq>0

|Fq |2
Eq

> 0 and − λ−(2 + λ−) ≥ 0. (58)
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Fig. 5 The non-negativity areas are shown for the d2Q5/d2Q9(stan) (top row) and the d3Q7/d3Q15(stan)

(bottom row) when g(u) = 0 (left) and g(u) = 1 (right). The dashed line bounds the non-negativity domain
of the minimal models (cf. Fig. 3); the “solid” line is for “full” schemes: their non-negativity boundaries
(n-lines) are specified, respectively, by relations (54) when g(u) = 0 and by relations (118) and (122) when

g(u)g
(u)
αβ = 1

Using Corollary A.1.A and Remark A.1.B with aq = Fq , then X ≥ 1, then

|�|2 = −λ−(2 + λ−)

X
+ (1 + λ−)2 ≤ −λ−(2 + λ−) + (1 + λ−)2 = 1. (59)

This gives the assertion: |�| ≤ 1, �

Remark 2.5.A It follows from relation (58) that for all q , |�q | ≥ |1 + λ−| for the BGK
model. Hence, restricting condition (43) to the BGK model: |�Qm

q=0�q | = |1 + λ−|Q−1 then
|�q | ≤ 1 for all q . This presents an alternative proof of relation (59). Then, for the BGK
model with positive equilibrium, all the roots are such that

|1 + λ−| ≤ |�q | ≤ 1. (60)

Remark 2.5.B The non-negativity condition can be used as a sufficient estimate of the sta-
bility bounds for the OTRT sub-class (Lemma 2.3.2) and the BGK model (Theorem 2.5). It
is noted that {Eq ≥ 0} implies {E+

q ≥ 0}, hence, the non-negativity conditions cannot relax
the constraints of Theorem 2.3.1. The non-negativity conditions are derived in Sects. B.1
and B.2 for the d2Q9 and d3Q15 schemes, respectively, with isotropic diffusion tensor but
retaining all degrees of freedom for the weights, with and without the anisotropic tensor of
numerical diffusion. They are compared in Fig. 5 for the pairs of models: d2Q5/d2Q9(stan)

and d3Q7/d3Q15(stan). Altogether the non-negativity conditions strongly depend on the
equilibrium weights and the amount of numerical diffusion (see examples below for “full”
models).
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Fig. 6 The unstable points (obtained with the numerical stability analysis) for the d3Q7 BGK model with
τ = 0.51 are shown for g(u) = 0 (left) and g(u) = 1 (right). The non-negativity areas (77) and (78) (with
Dmin = ce) are “filled”. For comparison, the OTRT stability boundary is plotted by a dashed line. The vertical
(g(u) = 0) or decreasing (g(u) = 1) boundary is the E0-n-line. The set of “moving” equilibrium weights {Eq }
contains the negative elements when U2 lies between the a-line and the n-line

Fig. 7 The unstable points for the d3Q15(stan) BGK model with τ = 0.51 are shown for g(u) = 0 (left) and

g
(u)
αβ g(u) = 1 (right). The non-negativity areas (121) are “filled”. They can be compared to the non-negativity

domains of the d3Q15(unif ) scheme in Fig. 15. The stable area of the OTRT sub-class is limited by dashed
line

Remark 2.5.C We emphasize that the non-negativity line is especially restrictive in the
advection-dominant (but relatively large) zone ce → 0 when the numerical diffusion is re-
moved. The necessity of the non-negativity conditions for the BGK model in the advection
limit is confirmed for all minimal models and the selected “full” models, as illustrated in
Figs. 6 and 7. The proof is out of the scope of this work. Assuming the non-negativity condi-
tion as the necessary advection condition, it becomes imperative for the BGK model to avoid
small ce values when Λ− → 0 (τ → 1

2 ). The velocity weights should be equal: t (a)
q = t (m)

q ,
for the two limit cases, t (m)

c = 0 and t (m)
c = 1

2 , otherwise their non-negativity domain reduces
to U 2 = 0, with or without the numerical diffusion. The “standard” equilibrium weights give
relatively large non-negativity domains. Selecting properly the equilibrium weights and ce

(especially), one may improve the stability of the BGK schemes in the advection limit.

2.6 Necessary Stability Conditions of the TRT Model in the Diffusion-Dominant Limit

We consider three principal orientations of the wave vector k: (1) when k is parallel to one
of the coordinate axis, say α: k = k1α , (2) when k is along the diagonal lattice direction:
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k = k1d , 1d ∈ {1, (1,1), (1,1,1)}, (3) when k is along the diagonal on two-dimensional sub-
lattice: k = k1(γ )

d , 1(γ )

d ∈ {(0,1,1), (1,1,0), (1,0,1)}. When k = π1d , then cos(πcq · 1d) ≡
−1 for all links of the minimal models and d3Q15.

Definition 2.6.1 The diffusion-dominant limit corresponds to k = π for any k mentioned
above, when the set {E−

q } vanishes in the characteristic equation (42) with relations (41),
since sin[kq ] = 0. This also includes the pure diffusion equation U ≡ 0 (then E−

q ≡ 0). The
characteristic equation (42) takes the form:

(1 + λ− + �)(�2 + �λ+(1 − 2s+) − (1 + λ+)) = 0, for

k = π1α, s+ = S +
α : all models,

k = π1d , s+ = S +: dDQ(2D+1), d3Q15,

k = π1d , s+ = S +
c : d2Q9,

k = π1(γ )

d , s+ = S +,γ
c : d3Q15, (61)

with
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S + = ∑Qm

q=1 E+
q = 1 − E0,

S +
α = ∑

q:cqα �=0 E+
q = ∑Qm

q=1 E+
q c2

qα = D+
αα = Dαα + g(u)U 2

α ,

S +
c = ∑

q:cqαcqβ=0,α �=β E+
q ,

S +,γ
c = ∑

q:cqαcqβ=0,cqγ =0 E+
q , γ �= α �= β.

(62)

Here, S +, S +
α , S +

c and S +,γ
c denote, respectively, the sum of all moving weights E+

q , their
sum for all populations with non-zero α-component of cq , the sum of E+

q for all coordi-
nate links and finally, the sum of E+

q for two of three coordinate links, those with zero
γ -component of their velocity cq . The second order polynomial (61) satisfies the conditions
of the Miller’s theorem (see relation (113)) when λ+ ∈]−2,0[, such that its stability bounds
are set by the case λ+ = −1:

� = 1 − 2s+, then |�| ≤ 1 if only 0 ≤ s+ ≤ 1. (63)

Using relations (62) for s+ in inequality (63), we derive four principal necessary diffusion-
dominant stability conditions:

1. The first condition is:

k = π1α, all models: 0 ≤ S +
α ≤ 1. (64)

2. The second condition is:

k = π1d , dDQ(2D+1) and d3Q15: 0 ≤ S + ≤ 1, 0 ≤ E0 ≤ 1. (65)

3. The third condition is:

k = π1d , d2Q9: 0 ≤ S +
c ≤ 1, 0 ≤ E0 +

∑

q:cqxcqy �=0

E+
q ≤ 1. (66)
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4. The fourth condition is:

k = π1(γ )

d , d3Q15: 0 < S +,γ
c ≤ 1, ∀γ = 1, . . . , d. (67)

Remark 2.6.A We stress that the obtained diffusion conditions are necessary for the TRT
model with any eigenvalues. They are straightforward for the OTRT sub-class using solu-
tion (47) where B vanishes. One can replace any

∑
q E+

q in relations above with
∑

q Eq

owing to the symmetry.

Remark 2.6.B The first condition (64) restricts the sub-set {E+
q } with a common nonzero

velocity coordinate to [0,1]. Hence, E+
q ∈ [0, 1

2 ] for the minimal models. Since 0 ≤ D+
αα ≤ 1

and D+
αα = Dαα + g(u)U 2

α ≥ Dαα then, for all the models, ce =
∑d

α=1 Dαα

d
is confined to [0,1]

and U 2 is limited by 1 − ce when g(u) = 1:

g(u) = 1: U 2
α ≤ 1 − Dαα, 0 ≤ Dαα ≤ 1, ∀α = 1, . . . , d,

then: U 2 ≤ 1 − max
α

{Dαα} ≤ 1 − ce, 0 ≤ ce ≤ 1. (68)

Remark 2.6.C The second condition (65) constraints E0 and, equivalently,
∑Qm

q=1 E+
q to the

interval [0,1] but only for the minimal models and d3Q15. Indeed, the third condition (66)
for the d2Q9 scheme does not restrict E0 alone to [0,1], but only together with

∑
q E+

q for
the diagonal links. This sum alone is not restricted to [0,1], unless it vanishes when the d2Q9
model reduces to the d2Q5 model (then E0 ≥ 0). Therefore, the necessary condition (66) is
weaker than the condition E0 > 0. The sufficient stability conditions in Sect. 4 respect,
mostly, neither E0 > 0 nor {E+

q > 0}. This is illustrated in Fig. 13.

Remark 2.6.D Finally, the d3Q15 scheme restricts to [0,1]: (i) E0 (hence
∑Qm

q=1 E+
q ),

(ii)
∑

q E+
q for any two of three coordinate links, and (iii)

∑
q E+

q for any coordinate link
with all the diagonal links.

3 Optimal Minimal Models and Finite-Difference Schemes

3.1 Minimal OTRT Models

We consider the minimal TRT models: dDQ(2D+1) = {d1Q3, d2Q5, d3Q7}. Their opti-
mal stability bounds are set by relations (46) with (45), where the equilibrium components
E±

q are prescribed by relations (9) with (16), then:

� = 1 +
d∑

α=1

D+
αα(cos[kα] − 1) − i

d∑

α=1

Uα sin[kα], D+
αα = Dαα + g(u)U 2

α . (69)

We prescribe the necessary and sufficient conditions for all minimal models:

⎧
⎨

⎩

(1) 0 ≤ E0 ≤ 1, or, equivalently, 0 ≤ ∑d

α=1(Dαα + g(u)U 2
α ) ≤ 1,

(2)
∑

α

U2
α

Dαα+g(u)U2
α

≤ 1, g(u) = {0,1}.
(70)
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Their sufficiency immediately follows from relations (49). The necessity of the first
(diffusion-dominant) condition is stated by relation (65). Then the d-line boundary reduces
to the E0-n-line for the minimal models. The necessity of the second, advection condition
can be derived from relation (69) in the limit k → 0, similarly as it was demonstrated above
for isotropic tensors (see relations (36) and (48)). More rigorous proof can be obtained using
techniques [17] (see also Sect. 3.3). When the diffusion tensor (12) is isotropic and {E+

q } is
prescribed with relation (18), conditions (70) become:

g(u) = 0: U 2 ≤ U 2
a,0 = ce, 0 ≤ ce ≤ c(max)

e = c(0)
e = 1

d
. (71)

Here, the optimal advection line, a-line, is U 2 = U 2
a,0 and the non-negativity line, E0-n-line,

reduces to ce = 1
d

(see Definitions 1.2.1.C and D). The stability bounds are illustrated by
the left diagram in Fig. 1. Then the highest velocity amplitude, U 2 = 1

d
, is reached on the

E0-n-line, the highest possible Courant number is Cr = 1√
d

. When ce = 1, the d1Q3 model
reduces to d1Q2 where the Cr = 1. The work by Rheinländer [27] shows that the d1Q2
BGK model has this condition for any τ . However, without immobile population, the d1Q2
cannot remove the numerical diffusion with local equilibrium distribution.

When g(u) = 1, replacing ce with ce + U 2
α in relation (71), and summing over α, the

stability conditions become:

g(u) = 1: U 2(ce) ≤ min

{
1 − dce,∀d,

d

d − 1
ce, d ≥ 2

}
, 0 ≤ ce ≤ 1

d
. (72)

This can also be obtained noting that the functions (70) with isotropic diffusion components
have their maximum for diagonal velocity direction. The stability bounds are illustrated by
the right diagram in Fig. 1. They are all limited by the (decreasing) E0-n-line function U 2

d =
1 − dce and the (increasing) a-line function U 2(ce) ≤ d

d−1ce , except the d1Q3 model where
the a-line reduces to the boundary segment 0 ≤ U 2(ce = 0) ≤ 1. The intersection of the
a-line and the E0-n-line when ce = c

opt
e gives the highest stable velocity: U 2

opt = U 2(c
opt
e ):

g(u) = 1:
d1Q3: 0 ≤ ce ≤ 1,U 2 ≤ U 2

d = 1 − ce,

then copt
e = 0,U 2

opt = 1.

d2Q5: 0 ≤ ce ≤ 1

2
, U 2 ≤ U 2

d = 1 − 2ce and U 2 ≤ U 2
a,1 = 2ce,

then copt
e = 1

4
,U 2

opt = 1

2
.

d3Q7: 0 ≤ ce <
1

3
,U 2 ≤ U 2

d = 1 − 3ce and U 2 ≤ U 2
a,2 = 3

2
ce,

then copt
e = 2

9
,U 2

opt = 1

3
. (73)

Remark 3.1.A The stability bounds of the d1Q3 model are:

d1Q3, g(u) = 0: U 2 ≤ U 2
a,0 = ce, 0 ≤ ce ≤ 1,

d1Q3, g(u) = 1: U 2 ≤ U 2
d = 1 − ce, 0 ≤ ce ≤ 1. (74)
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These conditions are necessary for all velocity sets (see relations (36) and (68)) and we
refer to them as “best” (possible) stability.

Remark 3.1.B Let Dmin be the smallest diagonal diffusion coefficient {Dαα} (Dmin ≤ ce).
The sufficient advection condition (70-2) for anisotropic tensors can be simplified using the
stronger condition:

d∑

α=1

U 2
α

Dmin + g(u)U 2
α

≤ 1. (75)

Then the conditions (71)–(72) can be adapted by replacing ce with Dmin, but uniquely for
the advection lines: {U 2

a,0,U
2
a,1,U

2
a,2}.

The stability bounds for Cr = |U| = √
U 2 versus Pe∗

�x = Λ−Pe�x = |U|
ce

are shown in

Fig. 2. They are obtained by replacing ce with |U |
Pe∗

�x
in relations (71) and (73):

g(u) = 0:

0 ≤ Cr ≤ Cr0 = Pe∗
�x

d
, if 0 ≤ Pe∗

�x ≤ Pe∗
0 = √

d, else 0 ≤ Cr ≤ 1

Pe∗
�x

.

g(u) = 1: 0 ≤ Cr ≤ Cr0, Cr0 =
−d +

√
d2 + 4(Pe∗

�x)
2

2Pe∗
�x

,

if 0 ≤ Pe∗
�x ≤ Pe∗

0 = d
√

d

d − 1
, else 0 ≤ Cr ≤ d

(d − 1)Pe∗
�x

, d �= 1. (76)

The E0-n-line Cr = Cr0 dominates when Pe∗
�x is small, while the a-line bounds the domain

for Pe∗
�x > Pe∗

0 . The use of Pe∗
�x enables us to cover all grid Peclet numbers Pe�x on the

same diagram. When the diagonal elements of the numerical diffusion are removed, all the
models reach higher Courant values Cr for equal Pe∗

�x values in the advection-dominant
regime. The d1Q3 model is then “unconditionally” stable until Cr = 1 when Pe∗

�x → ∞.
The necessary and sufficient stability conditions (76) are valid for any Λ− using the OTRT
sub-class, with Λ− = 1

2 for the OBGK model.

Examples 3.1 The spectrum of the characteristic equation (38) is computed with the
help of numerical eigenmode routines (the CLAPACK library) when both U and k vary
in a d-dimensional space. Typically, we use 8 points per every variation of U: U =
U{cosψ sinα, sinψ sinα, cosα}) and 8 points per every variation of k with respect to U,
with 72 points for |k| ∈ [0,π

√
d], once U is set. We first confirm that Λ = 1

4 gives the same
stable areas as the OBGK model, for very different values of Λ−. The numerical analysis
validates the predicted stability bounds, as illustrated in Fig. 8. In fact, for isotropic minimal
models in two and three dimensions, it turns out that the necessary and sufficient stability
conditions are set by the diagonal directions. We emphasize that the stability bounds U 2(ce)

(Figs. 1, 2, and 8) are valid ∀Λ+ > 0 and ∀Λ− > 0 such that Λ = Λ+Λ− = 1
4 .
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Fig. 8 The unstable points (ce, |U|2) are shown for the d3Q7 OBGK model (where |�| ≥ 1 + ε, ε = 10−14,
with the numerical stability analysis). They perfectly fit the predicted necessary and sufficient bounds (52)
and (71) for g(u) = 0 (left) and (73) for g(u) = 1 (right). These stability domains are valid for the whole
OTRT sub-class

3.2 Optimal and Non-negativity Conditions

Let Dmin ≤ ce ≤ 1
d

be the smallest diagonal coefficient. The non-negativity equilibrium con-
ditions for minimal models are:

g(u) = 0, d = {1,2,3}: U 2 ≤ U 2
n = Dmin2

,0 ≤ ce ≤ 1

d
(77)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(u) = 1, d = {1,2,3} : U 2 ≤ U 2
n = 1 − dce,

and
g(u) = 1, d = 1 : (U 2 ≤ U 2(−)

n )||(U 2 ≥ U 2(+)
n ),

g(u) = 1, d = {2,3} : U 2 ≤ U 2(−)
n , U 2(±)

n = (1±
√

1−4Dmin)2

4 .

(78)

These relations apply for isotropic tensors with Dmin = ce , as illustrated in Fig. 3. First
condition (78) (E0 ≥ 0) is common for both, non-negativity and optimal stability conditions.
The non-negativity line (n-line) envelopes conditions {Eq ≥ 0} for the moving populations.
This condition rules out the whole area between the optimal boundary a-line and the n-line.
Figure 6 confirms that the stability boundary of the BGK model approaches solution (78)
when Λ− → 0.

Lemma 2.3.2 states that the non-negativity conditions are stronger than the sufficient
conditions (70). For isotropic tensors and g(u) = 0, the optimal condition: U 2 ≤ ce is ob-
viously weaker than the non-negativity condition: U 2 ≤ c2

e . Let us illustrate this property
for anisotropic tensors. In fact, when the non-negativity condition is verified, each velocity
component Uα > 0 is such that Dαα − Uα + g(u)U 2

α ≥ 0, then

d∑

α=1

U 2
α

Dαα + g(u)U 2
α

≤
d∑

α=1

(Dαα + g(u)U 2
α )2

Dαα + g(u)U 2
α

≤ 1 − E0 ≤ 1.

For isotropic diffusion tensor, the non-negativity domain in the plane (Cr,Pe∗
�x) is given by

{
g(u) = 0: 0 ≤ Cr ≤ Cr0, 0 ≤ Pe∗

�x ≤ 1.

g(u) = 1: max{0,
Pe∗

�x−1
Pe∗

�x
} ≤ Cr ≤ Cr0, ∀Pe∗

�x.
(79)
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The E0-n-line Cr = Cr0 is given by relations (76). Conditions (79) agree with the non-
negativity solution [29] (see their Sects. (A.1)–(B.1) for the d1Q3 model with g(u) = {0,1}
and d2Q5 with g(u) = 0, respectively). The non-negativity conditions are illustrated in Fig. 4.
In the presence of numerical diffusion, the non-negativity condition U 2 ≤ c2

e restricts Pe∗
�x

to [0,1]. When the numerical diffusion is removed, then higher Pe∗
�x values can be reached

inside the non-negativity domain in multi-dimensions. In one dimension, any Pe∗
�x value

is available but the non-negativity condition rules out the stable area for 0 ≤ Cr(Pe∗
�x) ≤

Pe∗
�x−1

Pe∗
�x

when Pe∗
�x > 1.

Remark 3.2 Altogether, the OTRT sub-class is stable for any grid Peclet number Pe�x when
the necessary and sufficient conditions (70) are verified, even when some of the “moving”
equilibrium distributions are negative.

3.3 The OTRT Sub-class Against the Forward-Time Central-Differences Schemes

We mainly follow the work by Hindmarsch, Grescho & Griffiths [17]. The minimal diffusion
stencils contain 3, 5 and 7 points in one, two and three dimensions, respectively. The neigh-
bors are the same as for dDQ(2D+1) models. The minimal forward-time central-differences
scheme (FTCS) for the advection-diffusion equation reads:

s(r, t + �t) − s(r, t)
�t

+
d∑

α=1

Uα�̄αs(r, t) =
d∑

α=1

Kαα�2
αs(r, t), (80)

where �̄α and �2
αs(r, t) are respectively the central-difference and Laplace operators along

the α-axis. Let us define the dimensionless parameters:

Df.d.
αα = 2

Kαα�t

�2
α

, Uα = uα�t

�α

, and Pe∗
�α = uα�α

2Kαα

= Uα

Df.d.
αα

. (81)

Substituting the Fourier mode, s(r, t) = �t exp(ir · k), the solution of the FTCS for the
amplification factor � is:

� = 1 +
d∑

α=1

Df.d.
αα (cos[kα] − 1) − i

d∑

α=1

Uα sin[kα]. (82)

Hindmarsch et al. [17] prove that this scheme is stable in the von Neumann sense, if and
only if the following conditions take place:

⎧
⎪⎨

⎪⎩

(1) 0 ≤ ∑d

α=1 Df.d.
αα ≤ 1, or, equivalently, c

(f.d.)
e =

∑d
α=1 Df.d.

αα

d
≤ 1

d
,

(2)
∑d

α=1
U2

α

Df.d.
αα

≤ 1, or, equivalently,
∑d

α=1 UαPe∗
�α ≤ 1.

(83)

The (modified) MFTCS scheme, also known as Lax-Wendroff scheme in one dimension, re-

moves the diagonal elements of the numerical diffusion, taking Kαα = Kαα + u2
α

2 . Its stability
conditions can be obtained replacing in both relations (83):

MFTCS: Df.d.
αα → Df.d.

αα + U 2
α . (84)
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The characteristic equation (82) is equivalent to (44) for the OBGK scheme (Λ− = 1
2 , p = 0,

� = A − iB), with g(u) = 0 for the FTCS and g(u) = 1 for the MFTCS. It follows that the
proofs [17] of the necessity and sufficiency are also suitable for the OTRT conditions (70),
replacing Df.d.

αα = 2 Kαα�t

�2
α

with Dαα = Kαα�t

Λ−�2
α

.
Let us now compare the OTRT sub-class and FTCS in efficiency on the same grid,

with respect to their available time-steps �t and �
f.d.
t . Keeping in mind that Pe∗

�x = U
ce

=
Λ−Pe�x , Pe∗

�x
f.d. = U

c
(f.d.)
e

= 1
2 Pe�x , then Pe∗

�x = 2Λ−Pe∗
�x

f.d. and the two principal stability

criteria of both schemes give when g(u) = 0:
⎧
⎪⎨

⎪⎩

diffusion-dominant: 0 ≤ Cr ≤ Const Pe∗
�x, then �t > �

f.d.
t if Λ− > 1

2 .

advection-dominant: 0 ≤ Cr ≤ Const
Pe∗

�x
, then �t > �

f.d.
t if Λ− < 1

2 .

Selecting Λ− > 1
2 the time-step condition of the OTRT sub-class is more efficient than the

one of the FTCS in the diffusion-dominant regime. This is conversely in the advection-
dominant regime where Λ− < 1

2 allows larger time steps. When Λ− = 1
2 then the OTRT

and BGK schemes coincide with the FTCS. In summary, owing to Λ−, both the BGK and
OTRT sub-classes allow larger time steps than the explicit finite-difference schemes in the
diffusion-dominant regime, where predominates the non-negativity of the immobile weight.
Owing to the free relaxation parameter, the OTRT sub-class also allows larger time steps in
the advection-dominant regime, provided that ce and Λ− are properly selected.

4 The d2Q9 and d3Q15 Models

The objectives of this section are: (a) to specify the set of necessary (any eigenvalues) sta-
bility conditions based on the above results for the advection-dominant and the diffusion-
dominant limits, (b) to derive sufficient specific OTRT stability conditions with the help of
Theorem 2.3.1 (for this we first need to derive the non-negativity conditions for symmetric
weights {E+

q }), and (c), to build necessary and sufficient OTRT stability conditions for the
most interesting cases. The restriction {E(a)

q = 0} is applied to all results of this section. For
comparison, the non-negativity conditions {Eq = E+

q + E−
q ≥ 0} are plotted along with the

OTRT sufficient conditions for all figures.

4.1 Non-negativity of the Symmetric Weights {E+
q }: d2Q9 and d3Q15 Models

The equilibrium parameter ce is found in the interval [0,1] (cf. relation (68)). The non-
negativity of the immobile weight, E0-n-line function U 2

d (ce), is prescribed by relations (33)
and (34), respectively, for the d2Q9 and d3Q15 schemes. We first derive the non-negativity
conditions per class, for the coordinate weights: U 2 ≤ U 2

p,c(ce) and for the diagonal weights:
U 2 ≤ U 2

p,d(ce). Interestingly, both functions are the same for the d2Q9 and d3Q15 schemes.

Coordinate Links The whole set {E+
q } is non-negative for the coordinate links when E(a)

q =
0 and g(u) = 0. However, when g(u) = 1 the minimum minq E+

q (ce,U) is equal to cet
(m)
c +

(γu−1)

6 U 2, and it is reached on the link perpendicular to the coordinate axis parallel to U.
Then {E+

q ≥ 0} for all the coordinate links provided that U 2 ≤ U 2
p,c(ce) where:

g(u) = 1, g
(u)
αβ = {0,1}: U 2

p,c = kcce, kc = 6t (m)
c

1 − γu

, γu �= 1. (85)
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Hence E+
q ≥ 0 for all the coordinate links and ∀U when γu = 1 (t (u)

c = 1
2 ), i.e., when only the

coordinate links obtain the U 2-term, as the minimal models. When t (m)
c ≡ 0 then U 2

p,c(ce) =
0, except γu = 1. It follows that Theorem 2.3.1 can be applied for t (m)

c = 0 only with t (a)
c = 0

and γu = 1.

Diagonal Links When E(a)
q = 0 and g

(u)
αβ g(u) = 0 then E+

q ≥ 0 for all the diagonal

links. However, when g
(u)
αβ g(u) = 1, the minimal diagonal weight E+

q is proportional to
6ce(1 − 2t (m)

c ) − U 2(1 + 2γu). Then {E+
q ≥ 0} for all diagonal links if only U 2 ≤ U 2

p,d :

g
(u)
αβ g(u) = 1: U 2

p,d = kdce, kd = 6(1 − 2t (m)
c )

1 + 2γu

, γu �= −1

2
. (86)

This condition may vanish only when γu = − 1
2 . We recall that γu ∈ [− 1

2 ,1] for the d2Q9
scheme but γu is limited to [0,1] for the d3Q15 scheme (then {t (u)

q > 0}, see relation (26)).
The condition (86) is the most restrictive when γu = 1 once t (m)

c is set.

Coordinate and Diagonal Links The highest common slope value for U 2(ce), when both
conditions (85) and (86) are respected, is kc = kd = 2. This can be achieved only when γu is
linked to t (m)

c via specific rule, hereafter referred to as γu = γ (m)
u :

g
(u)
αβ g(u) = 1: kc = kd = 2 if only γu = γ (m)

u = 1 − 3t (m)
c . (87)

It is noted that the family (87) rules out the minimal models (27) but includes the “standard”
schemes (30). In fact, γu = γ (m)

u separates two sub-intervals where either kc ≥ 2 (when
γ (m)

u ≤ γu ≤ 1) or kd ≥ 2 (γu ≤ γ (m)
u ). When γu = γ (m)

u , the E0-n-lines and weights {t (u)
q }

become

d2Q9: U 2
d (ce) = 1 − ce(1 + 2t (m)

c )

1 − t
(m)
c

, t (u)
c = 1 − 2t (m)

c

2
, t

(u)
d = t (m)

c

2
.

d3Q15: U 2
d (ce) = 1 − ce(1 + 4t (m)

c )

1 − 2t
(m)
c

, t (u)
c = 1 − 3t (m)

c

2
, t

(u)
d = 3t (m)

c

8
. (88)

Interestingly, all the E0-n-lines (88) intersect the non-negativity line (87) U 2(ce) = 2ce

for ce = 1
3 , ∀t (m)

c ∈ [0, 1
2 ]. Then, all the symmetric weights {E+

q } and E0 are non-negative
provided that U 2 is confined into the following triangle:

U 2 ≤ 2ce if 0 ≤ ce ≤ 1

3
, and U 2 ≤ U 2

d (ce) if
1

3
≤ ce ≤ c(0)

e . (89)

Figure 9 illustrates these conditions for the d2Q9 and d3Q15 schemes when t (m)
c varies. The

highest possible velocity is U 2 = 2
3 :

g
(u)
αβ g(u) = 1: if E0 ≥ 0 and {E+

q ≥ 0} then U 2 ≤ 2

3
. (90)

Finally, we emphasize that relation (49-2) of Theorem 2.3.1 predicts the sufficient stability
conditions for the OTRT models with the weight family (87) provided that U 2 ≤ 2ce and
E0 ≥ 0.
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Fig. 9 The best possible domains (89) for non-negative symmetric weights (E+
q ≥ 0 ∀q and E0 ≥ 0), are

shown for the d2Q9 schemes (left) and d3Q15 schemes (right), when t
(m)
c varies and 0 ≤ γu = 1 − 3t

(m)
c ≤ 1

(relation (87)). The boundary segment U2 = 2ce (solid line) guarantees {E+
q > 0} for these weights. The

E0-n-line is the decreasing (dashed) edge, from right to left: t
(m)
c = {0, 1

8 , 1
4 , 1

3 , 1
2 } for the d2Q9 scheme,

and: t
(m)
c = {0, 1

8 , 1
5 , 1

3 } for the d3Q15 scheme. The d2Q9(stan) and d3Q15(stan) models have t
(m)
c = 1

3 ; the

d2Q9(unif ) and d3Q15(unif ) models have t
(m)
c = 1

4 and t
(m)
c = 1

5 , respectively. The peak is for ce = 1
3 for

any t
(m)
c

4.2 The d2Q9 Model

4.2.1 The d2Q9 Model: Necessary Stability Conditions for Any Eigenvalues

With Numerical Diffusion g(u) = 0 The necessary diffusion-dominant conditions (64)
and (66) become:

⎧
⎨

⎩

(1) k = π{1,0}: 0 ≤ ce ≤ 1,

(2) kπ = π{1,1}: 0 ≤ ce ≤ 1

4t
(m)
c

.
(91)

Together, these two conditions give:

0 ≤ ce ≤ c(max)
e , c(max)

e = min

{
1,

1

4t
(m)
c

}
, 0 ≤ t (m)

c ≤ 1

2
. (92)

Hence, ce is available in the whole interval [0,1] when t (m)
c ∈ [0, 1

4 ]. Combining condi-
tion (92) with the necessary advection-dominant condition (36), the necessary conditions in
the presence of numerical diffusion become:

g(u) = 0: U 2 ≤ U 2
a,0 = ce, 0 ≤ ce ≤ c(max)

e , c(max)
e = min

{
1,

1

4t
(m)
c

}
. (93)

Without Diagonal Numerical Diffusion g(u) = 1, g(u)
xy = 0 When g(u) = 1, the necessary

diffusion-dominant conditions (64) and (66) become:

U 2 ≤ min{U 2
d,1,U

2
d,2} where

⎧
⎨

⎩

(1) k = π{1,0} : U 2
d,1 = 1 − ce,0 ≤ ce ≤ 1,

(2) kπ = π{1,1} : U 2
d,2 = 3

(1+2γu)
(1 − ce

c
(max)
e

),0 ≤ ce ≤ c(max)
e .

(94)
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Combining necessary conditions (36) and (94), the necessary conditions in the presence of
cross-diagonal elements {D(num)

αβ , α �= β} become:

g(u) = 1, g(u)
xy = 0: U 2 ≤ min{U 2

a,1 = 2ce,U
2
d,1,U

2
d,2}. (95)

Remark 4.2.1.B We emphasize that the diffusion-dominant conditions do not require E0 ≥ 0
unless min{U 2

d,1,U
2
d,2} = U 2

d (the E0-n-line function U 2
d (ce) is given by relation (33)). When

t (m)
c ∈ [0, 1

4 ] or γu = − 1
2 (t (u)

c = 0) then min{U 2
d,1,U

2
d,2} = U 2

d,1 and U 2
d,1 = U 2

d if t (m)
c ≡ 0.

When t (m)
c ∈] 1

4 , 1
2 ] and γu = 1 (t (u)

c = 1
2 ) then min{U 2

d,1,U
2
d,2} = U 2

d,2 > U 2
d since c(max)

e >

c(0)
e . Finally, when t (m)

c ∈] 1
4 , 1

2 ] and − 1
2 < γu < 1, the diffusion boundary d-line consists

from two segments, the first one is U 2
d,1 and the second one is U 2

d,2. Examples can be found
in Figs. 10 to 14.

Without Numerical Diffusion, g(u)
xy g(u) = 1 When the numerical diffusion is cancelled,

the condition U 2 ≤ min{U 2
d,1,U

2
d,2} is still necessary but the advection-dominant condition

U 2 ≤ U 2
a,1 = 2ce is not retained. For example, the necessary conditions for all the schemes

with t (m)
c ∈ [0, 1

4 ] are:

⎧
⎪⎪⎨

⎪⎪⎩

g(u) = 0 : U 2 ≤ U 2
a,0 = ce, 0 ≤ ce ≤ 1.

g(u) = 1 : U 2 ≤ U 2
a,1 = 2ce, 0 ≤ ce ≤ 1

3 ,

U 2 ≤ U 2
d,1 = 1 − ce,

1
3 ≤ ce ≤ 1.

g(u)
xy g(u) = 1 : U 2 ≤ U 2

d,1 = 1 − ce, 0 ≤ ce ≤ 1.

(96)

However, in contrast with the d1Q3 model, condition U 2 ≤ 1 − ce is not sufficient for all the
weights {t (a)

q } and {t (u)
q } when the numerical diffusion is removed. Let us consider several

examples.

4.2.2 The d2Q9 OTRT Schemes: Examples

Examples 4.2.2.A The “uniform” scheme d2Q9(unif ) and “optimal” family d2Q9(opt). Let us
first introduce

d2Q9(unif ): t (a)
c = t (m)

c = t (u)
c = 1

4
, then γu = 1

4
. (97)

Theorem 2.3.1 predicts for this scheme the best possible advection boundary, U 2 = ce

when g(u) = 0 and U 2 = 2ce when g(u) = 1, g(u)
xy = 0 (see relations (96) and (126)), and

this is the only d2Q9 scheme with equal mass/advection weights satisfying at the same time
condition (87) and the necessary advection conditions from Theorem 2.3.1. However, Theo-
rem 2.3.1 restricts the domain of validity of the advection conditions to the E0-n-line given
by U 2

d = 4
3 −2ce for the d2Q9(unif ) scheme. Moreover, this theorem cannot predict larger sta-

ble area than U 2 ≤ 2ce , even without numerical diffusion, because of its non-negativity pre-
condition {E+

q > 0}. Based on the exact analysis of |�|2 (� is specified by relations (128)),
Proposition C.1.2.1 first proves the extension of the stability interval [0, c(0)

e ] to the larger in-
terval [0, c(max)

e ] when U = 0, for any d2Q9 OTRT scheme. Then Proposition C.1.2.2 proves
that U 2 ≤ ce (advection line) is a sufficient condition when g(u) = 0 and ce ∈ [0, c(max)

e ], for
any d2Q9 OTRT scheme provided that their mass and velocity weights are equal. Finally,
Proposition C.1.2.4 confirms that necessary conditions (93) and (95) are sufficient provided
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Fig. 10 The stability boundaries for the d2Q9 OTRT schemes with the “optimal” advection weight t
(a)
c = 1

4

are shown when t
(m)
c varies and γu = 1 − 3t

(m)
c (relation (87)). Left: g

(u)
xy = 0, the stable domain is bounded

by the necessary conditions (95), U2
a,1 = 2ce and the diffusion line, U2 ≤ min{U2

d,1,U2
d,2}. Right: g

(u)
xy = 1,

the only boundary is the diffusion line. When t
(m)
c ∈ [0, 1

4 ], then min{U2
d,1,U2

d,2} = U2
d,1 = 1 − ce (dot-

ted line). Otherwise, the diffusion line is composed of two linear segments, U2
d,1 and U2

d,2, as shown for

t
(m)
c = { 1

3 , 5
12 , 1

2 }, from the right to the left decreasing boundary

Fig. 11 The “uniform” d2Q9(unif ) OTRT scheme (97). The unstable points are shown for: (a) g(u) = 0,

(b) g(u) = 1, g
(u)
xy = 0, and (c) g

(u)
xy g(u) = 1. The stable area obtained from Theorem 2.3.1 is bounded by the

dashed lines (see the two first pictures). The effective (“filled”) stable sub-domains are bounded by the nec-

essary stability conditions (96). The d1Q3 stability (74) is reached when g(u) = 0 (a) and when g
(u)
xy g(u) = 1

(c). For comparison the non-negativity areas (dark grey) are plotted. This scheme is also illustrated in Fig. 13

that t (a)
c = 1

4 , for any choice of the other weights, and that the stable domain is uniquely
bounded by the decreasing diffusion line when the numerical diffusion is removed, as illus-
trated in Fig. 10. Hereafter, we call the equilibrium weights as “optimal” if they allow to
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Fig. 12 The “standard” OTRT model d2Q9(stan) (30). The unstable points are shown for: (a) g(u) = 1,

g
(u)
xy = 0 (left) and (b) g

(u)
xy g(u) = 1 (right). The sufficient boundaries given by Theorem 2.3.1 (left) and

Proposition C.1.2.5 (right) are plotted with dashed lines. The “filled” areas (light grey) are limited by neces-
sary boundary (99). The non-negativity sub-domains (118) are plotted (dark grey) for comparison

reach the d1Q3 stability on the OTRT sub-class:

d2Q9(opt): t (a)
c = 1

4
, t

(a)
d = 1

8
, t (m)

c ∈
[

0,
1

4

]
, ∀γu. (98)

Hence, the d2Q9(unif ) scheme is the “extreme” element of the d2Q9(opt) family. Figure 11
confirms the sufficiency of the stability bounds (96) with the help of eigenmode analysis of
the characteristic equation (38). Similar results are obtained for t (m)

c �= 1
4 , e.g., t (m)

c = 0 taking
γu = γ (m)

u (t (u)
c = 1

2 ). The non-negativity conditions: {Eq ≥ 0} and {E+
q ≥ 0}, then necessary

and sufficient conditions, are illustrated for the “uniform” scheme in Fig. 13 (right diagram).

Examples 4.2.2.B The “standard” scheme d2Q9(stan). The necessary conditions (93)
and (95), along with the exact analysis of |�(ce = 0)| when the numerical diffusion is
removed, give for the d2Q9(stan):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g(u) = 0 : U 2 ≤ ce,0 ≤ ce ≤ c(max)
e = 3

4 .

g(u) = 1, g(u)
xy = 0 : U 2 ≤ 2ce,0 ≤ ce ≤ 1

3 .

g(u) = 1, g(u)
xy = 1 : U 2(ce = 0) ≤ 3

4 .

g(u) = 1, g(u)
xy = {0,1} : U 2 ≤ 1 − ce,

1
3 ≤ ce ≤ 2

3 ,

g(u) = 1, g(u)
xy = {0,1} : U 2 ≤ 3 − 4ce,

2
3 ≤ ce ≤ c(max)

e = 3
4 .

(99)

The standard scheme has equal mass/velocity weights, then extension of the stability interval
up to c(max)

e is predicted by Proposition C.1.2.2 when g(u) = 0. The results of the eigenmode
analysis are illustrated in Fig. 12 when g(u) = 1. They suggest that the necessary condi-
tions (95) are also sufficient when g(u) = 1, g(u)

xy = 0 (left diagram). At the same time, the suf-
ficient conditions derived with the help of Theorem 2.3.1 (see relation (126)) give a smaller
stable area, U 2 ≤ 1+√

33
4 ce , further limited by the E0-n-line U 2

d = 3−5ce

2 . Next, the Proposi-
tion C.1.2.5 and Proposition C.1.2.6 confirm the sufficiency of conditions (95), e.g., when
γu = {− 1

2 ,0,1}. This suggests that they may be sufficient ∀γu ∈ [− 1
2 ,1]. When g(u)

xy g(u) = 1,
the selected γu value affects not only the segment U 2 = U 2

d,2(ce) of the diffusion boundary,
d-line, but also the advection limit. Proposition C.1.2.5 predicts for γu = 0 that the line
U 2(ce) = 3

4 is a sufficient condition up to its intersection with U 2
d,1 at ce = 1

4 . Next we ob-
serve that U 2(ce = 0) drops to 0 for γu = − 1

2 , in contrast to both cases γu = {0,1}. Hence,
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Fig. 13 (Color online) The non-negativity areas and stable sub-domains of the OTRT schemes are plot-
ted for the d2Q9(stan) (30) (left) and the d2Q9(unif ) (97) (right) when the numerical diffusion is removed,
partially or completely. Two non-negativity areas (117) have curvilinear boundaries: they are smaller when

g
(u)
xy = 0 (yellow) than when g

(u)
xy = 1 (green+yellow). The stable sub-domains predicted by Theorem 2.3.1

for g(u) = 1, g
(u)
xy = 0 are small (red+green+yellow) triangles: their left boundary is U2 = 1+√

33
4 ce for the

d2Q9(stan) and U2 = 2ce (the a-line) for the d2Q9(unif ) , and the right edge is the E0-n-line. The effective
stable domains include the area above the E0-n-line where E0 < 0 (magenta), and it also extends to the
a-line for the d2Q9(stan) (narrow triangle (dark-blue)). The (blue) domain above U2 = 2ce is stable only for

g
(u)
xy = 1 and the symmetric weights E+

q may become negative there. The total triangle 0 ≤ U2 ≤ 1 − ce (the

d2Q9(unif ) only) is the best stability area (74)

Fig. 14 Two “limit” equilibrium schemes (100): the d2Q9(diag) (left) and the d2Q9(coor) (right) are shown

for g(u) = 1, g
(u)
xy = 0. The “filled” sub-domains are bounded by necessary conditions (96) in the avail-

able intervals. The sufficient conditions obtained from Theorem 2.3.1 are plotted by dashed lines. Propo-
sition C.1.2.7 extends them up to the necessary conditions for the d2Q9(diag) . The (principal) necessary
conditions are not sufficient for the d2Q9(coor) . The non-negativity areas (117) are plotted (dark grey) for
comparison (they are set by the coordinate links for the d2Q9(coor))

the results suggest that the choice γu = − 1
2 (t (u)

c = 0, when the U 2-term is completely ab-
sorbed by the diagonal links) is unfavorable in the advection-dominant limit.

The non-negativity, necessary and sufficient conditions can be compared for the “stan-
dard” and “uniform” weights in Fig. 13. The d2Q9(unif ) has larger stability domains on the
OTRT sub-class but smaller velocity peaks of its non-negativity conditions: U 2

n (ce = 11
27 ) =

13
27 for the d2Q9(stan) against U 2

n (ce = 11
24 ) = 5

12 for the d2Q9(unif ) when the numerical diffu-
sion is removed.

Examples 4.2.2.C The d2Q9(diag) “diagonal” and d2Q9(coor) “coordinate” schemes. The two
previous examples may give the impression that a (minimal) combination of the necessary
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advection-dominant and diffusion-dominant conditions is always sufficient. This is however
not always so. Let us consider two “extreme” elements of family (87), called d2Q9(diag) and
d2Q9(coor), with (t (m)

c , γu) equal to (0,1) and ( 1
2 ,− 1

2 ), respectively:

d2Q9(diag): t (m)
c = t (a)

c = t
(u)
d = 0, t

(m)
d = t

(a)
d = t (u)

c

2
= 1

4
.

d2Q9(coor): t (m)
c = t (a)

c = 2t
(u)
d = 1

2
, t

(m)
d = t

(a)
d = t (u)

c = 0. (100)

Unlike the five populations based schemes, such as the d2Q5 or the “rotated” d2Q5, both
d2Q9(diag) and d2Q9(coor) schemes use two different sub-classes for their equilibrium mass
term and the isotropic U 2-term. Moreover, they use both velocity classes for the anisotropic
component of E(u)

q . When g(u) = 0 or g(u) = 1 and g(u)
xy = 0, the necessary conditions of

both schemes are the same as for the d2Q9(unif ) (cf. relations (96)) but the d2Q9(coor) is de-
fined only when ce ∈ [0, 1

2 ]. Theorem 2.3.1 predicts the same stability boundary U 2 ≤ ce

for both schemes and for both cases: either with numerical diffusion (where this condition
is necessary) or without it. However, Proposition C.1.2.7 expands this result and predicts
that the necessary conditions (96) are sufficient for the d2Q9(diag), as well, except when
g(u)

xy g(u) = 1. The exact analysis of |�|2 tells us that the necessary conditions are not suffi-

cient for d2Q9(coor) when g(u) = 1. The results of the eigenmode stability analysis in Fig. 14
confirm all these predictions. Again, the choice γu = − 1

2 (t (u)
c = 0) is unfavorable. In brief,

the d2Q9(diag) has the larger non-negativity domain and much better stability properties than
the d2Q9(coor).

4.3 The d3Q15 Model

4.3.1 The d3Q15 Model: Necessary Stability Conditions for Any Eigenvalues

In the advection-dominant limit, they are set by relation (36):

g(u) = 0: U 2 ≤ U 2
a,0 = ce.

g(u) = 1: U 2 ≤ U 2
a,2 = 3

2
ce. (101)

The first condition has the same form for all models, and the second condition is the same
as for the d3Q7 model. In the diffusion limit U = 0, the necessary conditions are set by
relations (64), (65) and (67):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1) k = π1α : 0 ≤ ce ≤ 1,

(2) k = π1d : 0 ≤ ce ≤ 1

1+4t
(m)
c

,

(3) k = π1(γ )

d : 0 ≤ ce ≤ 1

4t
(m)
c

.

(102)

Then the minimal relation is:

0 ≤ ce ≤ c(0)
e = c(max)

e = 1

1 + 4t
(m)
c

, when 0 ≤ t (m)
c ≤ 1

2
. (103)



1124 I Ginzburg et al.

This condition guarantees the non-negativity of the immobile weight, hence it is sufficient
for pure diffusion isotropic equation (Theorem 2.4). When g(u) = 1 and 0 ≤ ce ≤ c(max)

e , the
necessary diffusion-dominant conditions (64), (65), and (67) become:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1) k = π1α : U 2 ≤ U 2
d,1 = 1 − ce,

(2) k = π1d : U 2 ≤ U 2
d = 3(1−ce(1+4t

(m)
c ))

1+2γu
,

(3) k = π1(γ )

d : 0 ≤ 12cet
(m)
c +U2(1+2γu)−3U2

γ

3 ≤ 1.

(104)

Again, the second condition requires E0(ce,U
2) ≥ 0. When k = π1(γ )

d (1(γ )

d is parallel to
diagonal axis in 2d plane perpendicular to the γ -axis) then two conditions are imposed. The
minimal case of the (left) inequality (104-3) imposes U 2 ≤ U 2

p,c , the function U 2
p,c(ce) is

given by relation (85). We recall that condition U 2 ≤ U 2
p,c ensures the non-negativity of the

symmetric weights for all coordinate links. At the same time, condition (104-2) is stronger
than the right inequality (104-3) (≤ 1). Then the necessary stability conditions of the d3Q15
model become:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g(u) = 0 : U 2 ≤ ce,0 ≤ ce ≤ c(0)
e = c(max)

e = 1

1+4t
(m)
c

,

g(u) = 1, g
(u)
αβ = 0 : U 2 ≤ min{ 3

2ce,U
2
d,2,U

2
d }, 0 ≤ ce ≤ c(0)

e ,

g(u) = 1, g
(u)
αβ = 1 : U 2 ≤ min{U 2

d ,U 2
d,2}, 0 ≤ ce ≤ c(0)

e

U 2
d = 3(1−ce(1+4t

(m)
c ))

1+2γu
, U 2

d,2 = U 2
p,c = 6t

(m)
c

1−γu
ce.

(105)

When γu = γ (m)
u then U 2

d,2 = 2ce , whereas when γ (m)
u < γu < 1 the restriction U 2 ≤ U 2

d,2 is
weaker than U 2 ≤ 2ce and it vanishes when γu = 1 (t (u)

c = 1
2 ). Hence, the particularity of

the d3Q15 model is that the diffusion-dominant condition U 2 ≤ U 2
d,2 restricts the advection-

dominant zone, except for γu = 1 (t (u)
c = 1

2 ).

4.3.2 The d3Q15 OTRT Schemes: Examples

Examples 4.3.2.A “Uniform” scheme d3Q15(unif ) is introduced with:

d3Q15(unif ): t (a)
c = t (m)

c = t (u)
c = 1

5
, then γu = 2

5
. (106)

On the one hand, as the d2Q9(unif ), this scheme satisfies condition (87), and, on the other
hand, Theorem 2.3.1 gives to this scheme the best possible, necessary and sufficient, ad-
vection boundaries, U 2 = ce when g(u) = 0 and U 2 = 3

2ce when g(u) = 1, g
(u)
αβ = 0 (see

relations (135)). However, since the d3Q15(unif ) has γu �= 1, this scheme cannot have better
left boundary than U 2 = 2ce , even when the numerical diffusion is removed. The sufficiency
of this condition when g

(u)
αβ g(u) = 1 is addressed by Proposition C.2.2.1 (� is given by re-

lation (136) for the d3Q15 model). The independent eigenmode analysis of the spectrum
of (38) confirms the predicted sufficient conditions as shown in Fig. 15.

Examples 4.3.2.B The “standard” scheme d3Q15(stan). The equilibrium distribution (30) of
this scheme is built with the “hydrodynamic” weights and it satisfies relation (87). Hence,
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Fig. 15 The unstable points and stable (“filled”) area are shown for the d3Q15(unif ) OTRT model (106).
The stable domain is limited by the necessary and sufficient stability boundaries: U2 = 3

2 ce (left, g(u) = 1,

g
(u)
αβ = 0) and U2 = 2ce (right, g

(u)
αβ g(u) = 1), up to their intersection with the E0-n-line. The non-negativity

domain (121) is plotted (dark grey) for comparison

Fig. 16 The unstable points for the d3Q15(stan) OTRT model are shown for two values of the equilibrium

parameter γu: left, γu = 0 ( standard choice), and right, γu = 1, when g
(u)
αβ g(u) = 1. The “filled” areas are lim-

ited by necessary conditions: (left) U2 ≤ min{U2
d,2 = 2ce,U

2
d
} where U2

d
(ce) is the E0-n-line U2

d
= 3−7ce ;

(right) U2 ≤ U2
d
(ce), given by relations (105). When γu = 1, right, the velocity increases in the advection

zone, at least up to U2 = 4ce (dashed line), but the necessary conditions are not sufficient. The non-negativity
domain (dark grey) is much smaller for γu = 1

like the d3Q15(unif ) model, the d3Q15(stan) model respects the necessary lines (105): U 2 =
3
2ce or U 2 = 2ce , when g(u) = 1 and g

(u)
αβ = 0 or g

(u)
αβ = 1, respectively. However, in contrast

to the d3Q15(unif ) model, the sufficient advection line predicted by Theorem 2.3.1 is weaker,

U 2 =
√

3
2 ce . The results of the numerical eigenmode stability analysis in Fig. 16 and an

extensive analysis of |�|2 on the assumed boundary (Proposition C.2.2.1) both suggest that
the necessary conditions (105) are sufficient. Hence, the d3Q15(unif ) and d3Q15(stan) have
very similar effective stable areas, with a larger available interval for the d3Q15(unif ), ce ∈
[0, 5

9 ] compared to [0, 3
7 ] for the d3Q15(stan). When the numerical diffusion is removed,

the peak is for c
opt
e = 1

3 , then U 2
opt = 2

3 , for both schemes. When γu = 1 the stability line
U 2 = 2ce improves at least as U 2 = 4ce for the “standard” scheme. At the same time, the
E0-n-line is more restrictive and the non-negativity area is much smaller for γu = 1 than for
“standard choice” γu = 0 (see Fig. 16).
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Fig. 17 The stable triangles predicted by Proposition C.2.2.1 for the d3Q15 OTRT schemes with the coor-

dinate weights {t (a)
c , t

(u)
c } = { 1

4 , 1
2 } are shown for g(u) = 1, g

(u)
αβ = 0 (left) and g

(u)
αβ g(u) = 1 (right), t

(m)
c

varies between 0 and 1
2 (from right to left: t

(m)
c = {0, 1

8 , 1
5 , 1

3 , 1
2 }). The advection line a-line U2 = 3

2 ce is
sufficient when the cross-diffusion is not cancelled (left). The right edge of all triangles is the E0-n-line:

U2
d
(γu = 1) = 1 − ce(1 + 4t

(m)
c ). It bounds the stable area when g

(u)
αβ g(u) = 1 (right)

Examples 4.3.2.C “Optimal” family d3Q15(opt). Neither the d3Q15(unif ) nor the d3Q15(stan)

achieve the stability of the d1Q3 OTRT model. As a last example, we introduce the “opti-
mal” family, again based on t (a)

c = 1
4 :

d3Q15(opt): t (a)
c = 1

4
, t (u)

c = 1

2
, 0 ≤ t (m)

c ≤ 1

2
,

then: t
(a)
d = 1

16
, t

(u)
d = 0. (107)

For the choice t (u)
c = 1

2 (γu = 1), the necessary condition U 2 ≤ U 2
d,2 disappears. Combining

the predictions of the fourth-order analysis in k for the advection limit and the eigenmode
analysis for |�|2, Proposition C.2.2.1 predicts that the “optimal” schemes match the d1Q3
stability (96) in the available interval ce ∈ [0, c(0)

e ], when either g(u) = 0 or g
(u)
αβ g(u) = 1, their

stability bounds are illustrated in Fig. 17. These findings are also confirmed by an indepen-
dent analysis of the whole spectrum. However, in contrast to the “optimal” d2Q9(opt) family,
the whole interval ce ∈ [0,1] is available only for the “limit” weights: zero coordinate mass
weight t (m)

c = 0. Further extension of this work [18] suggests to avoid such “extreme” weight
configurations (which are the limits of some necessary and/or non-negativity conditions)
when Λ �= 1

4 . The d3Q15(unif ) model or the d3Q15(opt) with t (m)
c = t (a)

c = 1
4 and t (u)

c = { 1
4 , 1

2 }
are predicted as good stability candidates also beyond the OTRT.

5 Summary

This paper develops a von Neumann analytical analysis of the TRT operator for the linear
advection-diffusion equation. The key point is the splitting of the linear equilibrium func-
tion {eq = sEq} into symmetric and anti-symmetric components: {Eq = E+

q + E−
q }, which

have equal and opposite values, respectively, for two anti-parallel velocities called a link.
Let us subdivide the findings of this paper into three groups. The first group addresses gen-
eral statements, valid for any velocity set and equilibrium weights {E±

q } constrained to the

mass-conservation,
∑Qm

q=0 E+
q = 1. The BGK model is included as a particular sub-class of

the TRT model. The second group addresses specific results for the TRT modeling of the
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advection-diffusion equation, namely their necessary conditions for any values of the two
relaxation rates. The results in the third group are derived for the OTRT sub-class. Its ex-
ceptional feature is the independence of the stability bounds from the individual values of
the two relaxation times, provided that their specific combination Λ is kept equal to 1

4 .

I. The four following statements have been proved:

– A particular OTRT sub-class of the TRT operator (3), defined for any positive eigen-
value functions Λ+ and Λ− such that Λ = Λ+Λ− = 1

4 , is stable in the von Neumann
sense provided that, ∀k, |�|2 = A2 + B2 ≤ 1, with

A = 1 +
Qm∑

q=1

(cos[kq ] − 1)E+
q , B =

Qm∑

q=1

sin[kq ]E−
q , kq = k · cq .

This result is stated as Theorem 2.2.1. Exact, necessary and sufficient equilibrium
stability conditions are set when maxk |�(k)|2 = 1. The solution for amplification
factor � is specified by relations (69) for the minimal models, then by relations (128)
and (136) for the d2Q9 and d3Q15 velocity sets with the equilibrium functions (21)–
(22) and (24)–(25), respectively.

– The OTRT sub-class is stable if
∑Qm

q=1
(E−

q )2

E+
q

≤ 1, provided that E0 ≥ 0 and {E+
q > 0}

for all q = 1, . . . ,Qm. This result is stated as Theorem 2.3.1. This still applies when
E−

q ≡ 0 and E+
q ≥ 0. Using this result, one avoids a tedious eigenmode analysis.

However, the derived sufficient conditions may appear as more restrictive than nec-
essarily.

– If the equilibrium weights are non-negative, E0 ≥ 0 and {Eq > 0} for all q =
1, . . . ,Qm, then

∑Qm

q=1
(E−

q )2

E+
q

≤ 1 and the OTRT sub-class is stable. This result is

stated as Lemma 2.3.2. This still applies when Eq ≥ 0 and E+
q > 0, or when E−

q ≡ 0
and E+

q ≥ 0. The non-negativity of all equilibrium functions gives stronger sufficient
stability condition than the conditions obtained from Theorem 2.3.1.

– If E0 ≥ 0 and {Eq ≥ 0} for all q = 1, . . . ,Qm (at least one is strictly positive),
then the BGK model is stable. This result is stated as Theorem 2.5. Hence, the non-
negativity of all equilibrium functions is also sufficient for the stability of the BGK
model.

– If E0 ≥ 0, E−
q ≡ 0 and {E+

q ≥ 0} for all q = 1, . . . ,Qm (at least one is strictly pos-
itive), then the TRT model is stable. The result is stated as Theorem 2.4. It tells us
that the non-negativity of the symmetric equilibrium weights is sufficient for sta-
bility of the diffusion equation with no advection, for any eigenvalues. When the
mass weights {t (m)

q } are non-negative, the non-negativity of E0 is then sufficient for
isotropic diffusion equation. In other words, owing to Λ−, any value of the diffusion
coefficient can be obtained with the same equilibrium parameters, hence with the
same physical time steps.

II. The TRT modeling of the advection-diffusion equations (AADE) is examined in the
following framework: (a) {E−

q = t (a)
q (U · cq)}; (b) the mean diffusion coefficient is

equal to Λ−ce , where ce ∈ [0, c(max)
e ] is a free parameter of {E+

q }; (c) if g(u) = 0 then

{E+
q = t (m)

q ce} and this results in a full tensor of numerical diffusion D(num)
αβ = {−UαUβ};

(d) the numerical diffusion is partially (g(u) = 1, g
(u)
αβ = 0) or completely (g(u)

αβ g(u) = 1)
cancelled via the anisotropic equilibrium term {E(u)

q }, governed by the weights {t (u)
q };
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(e) the minimal models only cancel the diagonal elements {D(num)
αα }; the “full” mod-

els may also remove the cross-diffusion elements {D(num)
αβ , α �= β}; (f) all equilibrium

weights {t (m)
q , t (a)

q , t (u)
q } are non-negative, isotropic, found in the interval [0, 1

2 ] and sat-
isfy relation (10). We stress that their non-negativity is not a-priori a necessary stabil-
ity condition but a deliberate choice. The equilibrium term {E(a)

q } which introduces the
anisotropy of the diagonal elements {Dαα} for all the models, plus the anisotropy of
the cross-diagonal elements for the d2Q9 and d3Q15 schemes, is set equal to zero for
modeling of isotropic diffusion tensor.
II.1 The non-negativity of the symmetric weights {E+

q } and the immobile weight E0.
The non-negativity condition E0 ≥ 0 is prescribed by relations (19), (33) and
(34), for the minimal models, d2Q9 and d3Q15 schemes, respectively, and in-
dependently of the anisotropy of the modeled tensor. In the presence of the {E(u)

q }
term, the symmetric weights {E+

q } of the “full” models may become negative.
Their non-negativity conditions are the same for the d2Q9 and d3Q15 schemes, at
least when the modeled tensor is isotropic. They are prescribed by relations (85)
and (86), separately for the coordinate and diagonal links. When the numeri-
cal diffusion is completely removed (g(u)g

(u)
αβ = 1), the non-negativity of all the

weights {E+
q } necessarily restricts U 2 to be smaller than 2ce , and the whole in-

terval U 2 ∈ [0,2ce] is only available when 2t (u)
c = 1 − dt(m)

c , as given by rela-
tion (88). The intersection of the boundary U 2 = 2ce with the E0-n-lines then
occurs for ce = 1

3 , hence the highest possible velocity value is U 2(ce = 1
3 ) = 2

3
(see relation (89)), for any mass weights {t (m)

q }. Note that the non-negativity of
two equilibrium weights per link, Eq = E+

q ± E−
q , necessarily implies the non-

negativity of their symmetric components E+
q .

II.2 The non-negativity of the whole set {Eq}.
When the diffusion tensor is isotropic and the numerical diffusion is not corrected,
then the non-negativity condition is U 2 ≤ U 2

n = c2
e for all the minimal models.

The d2Q9 and d3Q15 schemes have the best non-negativity limits when their
mass/velocity weights are equal (t (m)

q = t (a)
q �= 0) but their highest available ve-

locity is only U 2
n = c2

e

d
when g(u) = 0 (see relations (115)). These situations are

illustrated by the left diagrams in Fig. 5.
This situation changes when g(u) = 1 (see the right diagrams in Fig. 5). The

non-negativity area is U 2 ≤ U 2
n = min{U 2

n,c,U
2
n,d} where Un,c and Un,d are the

(minimal) velocity values in relations (116) and (120) for the d2Q9 and d3Q15
schemes, respectively. These relations take the form (117) and (121) for the fam-
ily γu = γ (m)

u and equal mass/velocity weights, {t (a)
q = t (m)

q }. Since Eq > 0 im-
plies E+

q ≥ 0 for all the links, all non-negativity areas (117) and (121) are con-
fined to the triangle (89) (see Fig. 9). The diagonal links prescribe two different
non-negativity domains when g

(u)
αβ = 0 and g

(u)
αβ = 1, the domain is larger when

the numerical cross-diffusion is removed (g(u)
αβ g(u) = 1) (see Fig. 13 for the d2Q9

schemes and Figs. 16 and 17 for the d3Q15 schemes). The coordinate links give
the same non-negativity conditions for g

(u)
αβ = 0 or g

(u)
αβ = 1 but this condition dom-

inates only when t (u)
c → 0, as in Fig. 14. In all the considered cases, the highest

velocity inside the non-negativity domain is reached when ce > 1
3 (note that ce = 1

3
is the commonly used value). The non-negativity domain is especially narrow in
the advection zone ce → 0. When considering the non-negativity as a necessary
condition in the limit Λ− → 0 for the BGK model (a proof for the minimal models
is reported in [18]), one should pay a special attention on the selection of all the
equilibrium weights and equilibrium parameter ce .
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II.3 Necessary stability conditions (any eigenvalues) are:

– the advection-dominant stability conditions (35) for isotropic tensors. They re-
strict U 2(ce) to [0, ce] in the presence of numerical diffusion, g(u) = 0. When
the diagonal elements {−U 2

α } of the numerical diffusion tensor {D(num)
αβ } are

cancelled, then U 2 may lie in the intervals [0,2ce] and [0, 3
2 ce], respectively, in

two and three dimensions. When {D(num)
αβ } is completely cancelled (the d1Q3,

d2Q9 and d3Q15 schemes), then the only second-order restriction is ce ≥ 0.
However, this does not mean the “unconditional” stability: U 2(ce = 0) ∈ [0,1],
except for several schemes such as the d1Q3, d2Q9(opt) and d3Q15(opt).

– the diffusion-dominant stability conditions (64)–(67) constrain the specific lin-
ear combinations of symmetric equilibrium weights {E+

q } (whatever they are)
as:
1.

∑Qm

q=1 E+
q c2

qα to [0,1], ∀α = 1, . . . , d , then ce to [0,1], for all models. It
follows that the selected value Λ− should be higher than the mean diagonal

element of the rescaled diffusion tensor: Λ− >
∑d

α=1 K ′
αα

d
(cf. relations (11)

and (12)).
2.

∑
q E+

q to the interval [0,1]: for any two parallel velocities (one link) of the
minimal model; for all four coordinate velocities (two links) of the d2Q9,
and any two coordinate links for the d3Q15 schemes.

3. E0, or equivalently
∑Qm

q=1 E+
q , to the interval [0,1], but only for the minimal

and d3Q15 models. This condition dominates all previous ones when all
moving weights {E+

q } are non-negative.

These conditions are then elaborated for all the considered schemes with isotropic diffu-
sion tensors. The sufficient stability conditions (70) of the minimal models on the OTRT
sub-class, further precised by relations (72) and (73) for the isotropic minimal models,
are necessary for all eigenvalues. It follows that no choice of the eigenvalues may have
better stability criteria. Moreover, the necessary conditions of the d1Q3 model are also
necessary for all the others. It follows that no one velocity set may have better stability
than the d1Q3 OTRT scheme. The necessary conditions are specified, respectively, by
relations (93) and (95) and (104)–(105) for isotropic d2Q9 and d3Q15 schemes, with
any eigenvalues. The d2Q9 and d3Q15 models differ on two principal points. First, the
non-negativity of the immobile weight is necessary for the d3Q15 model, as for the
minimal ones. Second, the non-negativity of the coordinate values E+

q is one of the
additional necessary conditions (cf. (85) and (105)), unless the U 2-term is covered by
the coordinate links (t (u)

c = 1
2 , or γu = 1).

These necessary advection and diffusion dominant conditions should be further ex-
plored for full anisotropic diffusion tensors, to estimate the impact of the anisotropy on
the stability and to derive its effective available range. In fact, prescribing the positivity
for all the symmetric weights {E+

q }, the cross-diagonal elements {Dαβ} of the modeled
diffusion tensor are restricted to the condition: |Dαβ | ≤ minα Dαα , at least, for the d2Q9
and d3Q15 models, [13].

III. Necessary and sufficient stability conditions on the OTRT sub-class.
As it has been mentioned above, the sufficient conditions predicted by Theorem 2.3.1
for the minimal models are also necessary. Actually, one can predict the sufficient con-
ditions for the d2Q9 and d3Q15 models with any weights using relations (124) when
g(u) = 0, then relations (126) (for the d2Q9) and (134) (for the d3Q15) when g(u) = 1,
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further restricted by the non-negativity conditions (85) and (86) (both models), and
E0 ≥ 0. In some cases, e.g., when g(u) = 0 and mass/velocity weights are equal, the
sufficient conditions predicted by Theorem 2.3.1 are also necessary: U 2 ≤ ce . In gen-
eral, the sufficient conditions (enforcing the non-negativity of the immobile weight,
E0 ≥ 0) are more restrictive than necessarily for the diffusion (decreasing) boundary
of the d2Q9 schemes. Similarly, when the numerical diffusion is completely removed,
the derived advection line (enforcing all the symmetric weights to be non-negative,
{E+

q ≥ 0}) is often stronger than necessarily. The exact analysis of |�(k)| may of-
fer higher stable velocity amplitudes, along with larger available ce intervals, but this
(dependent on k) analysis is more tedious than the equilibrium control offered by The-
orem 2.3.1.

Altogether, the selected nine and fifteen velocity OTRT schemes, such as d2Q9(opt)

and d3Q15(unif ), d3Q15(stan) and d3Q15(opt) are provided with the necessary and suffi-
cient conditions. Their stability conditions cannot be improved for any other eigenvalue
choice. Moreover, the d2Q9(opt) and d3Q15(opt) OTRT schemes reach the d1Q3 stabil-
ity. Curiously, the “optimal” advection weights of the d2Q9(opt) family are equivalent to
the central-difference nine-point advection stencil with the weights { 1

4 , 1
2 , 1

4 }. When the
numerical diffusion is cancelled, this choice is delineated (without proof) for retain-
ing “unconditional” stability of Lax-Wendroff scheme in multi-dimensions [17]. We
believe that further extensions of this work for d3Q19 and d3Q27 velocity sets and
anisotropic tensors are straightforward and that our findings are interesting for explicit
finite-difference schemes on “full” stencils.

6 Concluding Remarks

From a practical point of view, the OTRT sub-class makes possible an efficient optimization
of the equilibrium and relaxation parameters for a given interval of Peclet numbers, solving
the physical problem. The OTRT model is “unconditionally” stable in the sense that any
Peclet number can be modeled with equal values of the physical time steps. At the same
time, the OTRT model is only conditionally stable in the sense that the available Courant
numbers are limited and controlled by the equilibrium parameters. In brief, selecting the
equilibrium parameter ce and eigenvalue function Λ−, one can take an advantage of U 2(ce)

and the (equivalent) Cr(Pe∗
�x) stability diagrams (with Pe∗

�x = Λ−Pe�x = |U|
ce

). The highest
velocity is reached at the intersection of the advection (increasing) and diffusion (decreas-
ing) lines. The established “hierarchy” of the equilibrium weights is, a-priori, valid only on
the OTRT sub-class. Beyond it, the most stable schemes may lose their robustness. Further
analysis [18] indicates that the advection-diffusion schemes with the same weight families
for all the terms are most capable for retaining of the OTRT stability when Λ ∈] 1

8 , 1
4 ].

When the selected OTRT schemes possess the necessary (best possible) stability among
all the TRT schemes, there is no reason to select Λ �= 1

4 , however, the smaller values of Λ

may become more efficient to reduce higher-order truncation errors, [8, 28, 30]. A good
compromise between accuracy and efficiency plays a decisive role in the choice of the nu-
merical parameters. Two comparative elements are still lacking: the accuracy properties of
the OTRT sub-class and the stability properties of the TRT schemes when Λ �= 1

4 .
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Exact time-dependent recurrence equations [12] re-interpret the OTRT sub-class as a
three-time-level central link-wise finite-difference schemes which share the properties of
the Du Fort-Frankel diffusion scheme [6], distinctive in what it is both explicit and uncondi-
tionally stable for pure diffusion equation. The particularity of OTRT temporal and spatial
discretization is not limited to the advection-diffusion equation. We believe that our results
are valuable for the hydrodynamic LBE models where, most likely, all advection-diffusion
stability constraints are also necessary (replacing ce with “sound” velocity c2

s ), and perhaps
for deriving stability conditions for other kinetic schemes.
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Appendix A: Theory

A.1 Corollaries of the Cauchy-Schwartz Inequality

In several places we need the following variants of the Cauchy-Schwartz inequality for sets
of (real or) complex quantities {a1, . . . , an} and {b1, . . . , bn}:

∣∣∣∣∣

n∑

q=1

aqbq

∣∣∣∣∣

2

≤
n∑

q=1

|aq |2
n∑

q=1

|bq |2. (108)

Lemma A.1 Any sets of Q = Qm + 1 complex numbers aq and bq obey the following in-
equality for any set of Q positive numbers Eq :

∣∣∣∣∣

Qm∑

q=0

aqbq

∣∣∣∣∣

2

≤
(

Qm∑

q=0

|aq |2
Eq

)(
Qm∑

q=0

Eq |bq |2
)

, Eq > 0, ∀q ∈ {0, . . . ,Qm}. (109)

This is the Cauchy-Schwartz inequality written for aq/
√

Eq and bq

√
Eq .

Corollary A.1.A If the complex numbers aq and the positive numbers Eq are such that∑Qm

q=0 aq = ∑Qm

q=0 Eq = 1, then

(
Qm∑

q=0

|aq |2
Eq

)
≥ 1, Eq > 0, ∀q ∈ {0, . . . ,Qm}. (110)

This is obtained from Lemma A.1 with bq = 1, ∀q ∈ {0, . . . ,Qm}.

Corollary A.1.B If the positive numbers Eq are such that
∑Qm

q=0 Eq = 1 with aq = Eq and
bq = cos(kq) (kq real), then Lemma A.1 gives

(
Qm∑

q=0

Eq cos(kq)

)2

≤ 1 −
Qm∑

q=0

Eq sin2(kq), Eq > 0, ∀q ∈ {0, . . . ,Qm}. (111)

Corollary A.1.C If the Eq are positive numbers and bq = sin(kq) (kq real), then Lemma
A.1 gives
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∣∣∣∣∣

Qm∑

q=0

aq sin(kq)

∣∣∣∣∣

2

≤
(

Qm∑

q=0

|aq |2
Eq

)(
Qm∑

q=0

Eq sin2(kq)

)
,

Eq > 0, ∀q ∈ {0, . . . ,Qm}. (112)

Remark A.1.B The positivity condition for the Eq can be replaced by a non-negativity condi-
tion (Eq ≥ 0) in Corollary A.1.B, since the terms corresponding to Eq = 0 do not contribute
to the sums. This can also be extended to Corollaries A.1.A and A.1.C, iff the terms |aq |2/Eq

go to zero when the corresponding Eq goes to zero.

A.2 Miller’s Theorem

Miller’s Theorem 6.1, [21], p. 403 Starting from a nth-order polynomial P (z) =∑n

j=0 a∗
j z

j , let us built the reduced (n − 1)th-order polynomial P1(z) (where a∗ denotes
complex conjugate of a):

P1(z) = P̃ (0)P (z) − P̃ (z)P (0)

z
, P̃ (z) =

n∑

j=0

a∗
n−j z

j . (113)

The Miller’s theorem 6.1 states that if, |P̃ (0)| > |P (0)|, then P (z) is a von Neumann poly-
nomial when P1(z) is a von Neumann polynomial (Neumann polynomials are polynomials
with all their zeros either in the open unit disk or on the unit circle).

Appendix B: Non-negativity Equilibrium Conditions

B.1 Non-negativity Conditions of the d2Q9 Model

The non-negativity of the immobile weight E0 ≥ 0 is guaranteed by conditions (33). The
interval ce ∈ [0, c(0)

e = 1

1+2t
(m)
c

] is assumed for all conditions below. The non-negativity con-

dition of moving populations, the n-line U 2 = U 2
n (ce) will bound the non-negativity area up

to its intersection with the E0-n-line (33). Relations (114) define the minimal equilibrium
functions: Emin

c and Emin
d which give minψ {Eq} taking U = U(cosψ, sinψ), for the coordi-

nate and the diagonal links, respectively. Without loss of generality, each relation below is
valid when it is non-negative for U ≥ 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coordinate and diagonal links for g(u) = 0:
Emin

c = −Ut(a)
c + cet

(m)
c , Emin

d = ce(1−2t
(m)
c )+√

2(−1+2t
(a)
c )U

4

coordinate links for g(u) = 1 and g(u)
xy = {0,1}:

Emin,1
c = U2(2+γu)+6(cet

(m)
c −t

(a)
c U)

6 , Emin,2
c = U2(−1+γu)−3(t

(a)
c

2−2cet
(m)
c )

6 ,

diagonal links for g(u) = 1 and g(u)
xy = 0:

Emin
d = ce(3−6t

(m)
c )+U(3

√
2(−1+2t

(a)
c )+U(1−γu))

12 ,

or for g(u) = 1 and g(u)
xy = 1:

E
min,1
d = (5−2γu)U2+6ce(1−2t

(m)
c )−6U

√
2(1−2t

(a)
c )

24 , and

E
min,2
d = −(1+2γu)U2−3((1−2t

(a)
c )2−2ce(1−2t

(m)
c ))

24 .

(114)
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The equilibrium distributions of coordinate/diagonal links are non-negative provided that
U ∈ [0,min{Un,c}] or U ∈ [0,min{Un,d}], respectively, where {Un,c} and {Un,d} are all suit-
able roots of equations {Emin

c (U) = 0} and {Emin
d (U) = 0}, respectively. When the numerical

diffusion is present, the non-negativity domain is U 2 ≤ U 2
n = min{U 2

n,c,U
2
n,d}, with:

g(u) = 0:
⎧
⎪⎨

⎪⎩

Un = Un,c = cet
(m)
c

t
(a)
c

if t (a)
c ≥

√
dt

(m)
c

1+2(
√

d−1)t
(m)
c

, else Un = Un,d =
√

dce(2t
(m)
c −1)

d(2t
(a)
c −1)

then: U 2
n = c2

e

d
if t (a)

c = t (m)
c �= 1

2 and U 2
n = c2

e if t (a)
c = t (m)

c = 1
2 , d = {2,3}.

(115)

These relations are valid for the d2Q9 model (d = 2) and the d3Q15 model (d = 3) (see

next section). When {t (a)
q = t (m)

q }, the n-line U 2
n = c2

e

d
is set by the diagonal links, except

for the d2Q5 and d3Q7 with t (a)
c = t (m)

c = 1
2 . Note that these minimal models has better

non-negativity condition than all others when ce ∈ [0, 1
d
]. In the two limit cases: t (m)

c = 0
and t (m)

c = 1
2 , the velocity is restricted to zero unless mass and velocity weights are equal,

{t (a)
q = t (m)

q }.
When the numerical diffusion is removed, then the diagonal links prescribe different

non-negativity conditions when g(u)
xy = 0 and g(u)

xy = 1. Again, U 2 ≤ U 2
n = min{U 2

n,c,U
2
n,d},

with:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coordinate links for g(u) = 1, g(u)
xy = {0,1}:

Un,c = 3t
(a)
c −

√
9t

(a)
c

2−6ce(2+γu)t
(m)
c

2+γu
, 0 ≤ ce ≤ cbis

e , cbis
e = (4−γu)t

(a)
c

2

6t
(m)
c

.

U 2
n,c = 3(t

(a)
c

2−2cet
(m)
c )

−1+γu
, γu �= 1, cbis

e ≤ ce ≤ c(0)
e ,

diagonal links for g(u) = 1 and g(u)
xy = 0:

Un,d = −3(1−2t
(a)
c )+

√
9(2t

(a)
c −1)2−6ce(−1+γu)(2t

(m)
c −1)√

2(−1+γu)
, γu �= 1, 0 ≤ ce ≤ c(0)

e ,

Un,d =
√

2ce(2t
(m)
c −1)

2(2t
(a)
c −1)

, γu = 1, t (a)
c �= 1

2 , 0 ≤ ce ≤ c(0)
e ,

or for g(u) = 1 and g(u)
xy = 1:

Un,d =
√

2(−3+
√

−3ce(2γu−5)(2t
(m)
c −1)+9(2t

(a)
c −1)2+6t

(a)
c )

2γu−5 , 0 ≤ ce ≤ cbis
e ,

U 2
n,d = − 3(−2ce(2t

(m)
c −1)+(2t

(a)
c −1)2)

1+2γu
, γu �= − 1

2 , cbis
e ≤ ce ≤ c(0)

e ,

cbis
e = − (7+2γu)(2t

(a)
c −1)2

12(2t
(m)
c −1)

, t (m)
c �= 1

2 .

(116)

The relations above are defined when γu ∈ [− 1
2 ,1] and {t (a)

c , t (m)
c } ∈ [0, 1

2 ], except for some
limit cases which should be considered separately. The non-negativity condition of coordi-
nate links consists of two segments where the first one (for Un,c) is set when U is parallel to
the coordinate axis. The non-negativity condition of diagonal links is prescribed by the di-
agonal velocity when g(u)

xy = 0. When g(u)
xy = 1, the non-negativity condition of the diagonal

links also consists from two segments where the first one (for Un,d ) is set when U is parallel
to the diagonal axis.
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Let us now specify the non-negativity conditions when {t (a)
q = t (m)

q }, γu = 1 − 3t (m)
c

(relation (87)) and the E0-n-lines are prescribed by relation (88). The case g(u) = 0 and
{t (a)

q = t (m)
q } is addressed by relations (115). When g(u) = 1, relations (116) become:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coordinate links for g(u) = 1 and g(u)
xy = {0,1}:

Un,c = −t
(m)
c +

√
t
(m)
c (2ce(−1+t

(m)
c )+t

(m)
c )

−1+t
(m)
c

, 0 ≤ ce ≤ t
(m)
c

2 (1 + t (m)
c ),

else U 2
n,c = 2ce − t (m)

c ,

diagonal links for g(u) = 1 and g(u)
xy = 0:

Un,d = −
√

(−1+2t
(m)
c )(−1+2(1+ce)t

(m)
c )−1+2t

(m)
c√

2t
(m)
c

,

or for g(u) = 1 and g(u)
xy = 1:

Un,d = −
√

2(

√
(−1+2t

(m)
c )(−1+ce+2(1+ce)t

(m)
c )−1+2t

(m)
c )

1+2t
(m)
c

,

if 0 ≤ ce ≤ 3
4 + (−2 + t (m)

c )t (m)
c , else U 2

n,d = 2ce + 2t (m)
c − 1.

(117)

All the non-negativity areas (117) lie inside the triangle prescribed by relations (89)–(90).
In the limit case t (m)

c = 1
2 (here t (u)

c = 0), the equilibrium weights {Eq} are all non-negative
for the diagonal links and the non-negativity condition is set by the coordinate links. The
non-negativity conditions (117) become for the d2Q9(stan) (30):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(u) = 0 : U 2
n = c2

e

2 , 0 < ce ≤ 3
5 .

g(u) = 1, g(u)
xy = 0 : U 2

n = 1
2 (−1 + √

1 − 2ce)
2, 0 ≤ ce ≤ cbis

e ,

U 2
n = 3−5ce

2 , cbis
e < ce ≤ 3

5 , cbis
e = −1+2

√
7

9 .

g(u) = g(u)
xy = 1 : U 2

n = 2
25 (1 − √

1 − 5ce)
2, 0 ≤ ce ≤ 7

36 ,

U 2
n = 2ce − 1

3 , 7
36 ≤ ce ≤ 11

27 , U 2
n = 3−5ce

2 , 11
27 < ce ≤ 3

5 .

(118)

This solution agrees with [28] (see their formulas (A.27) for g(u) = 0 and (40) for
g(u)

xy g(u) = 1). It is plotted in Figs. 12 and 13.

B.2 Non-negativity Conditions of the d3Q15 Model

The non-negativity of the immobile weight is prescribed by relation (34). As for the nine-
velocity schemes, we first determine the set of minimal conditions {Emin

c,d = minm,n{Eq}},
separately for each sub-class, taking U = U{cosψ sinα, sinψ sinα, cosα} and using
{m,n} = {tan[ α

2 ], tan[ψ

2 ]} for trigonometric operations. The domain of validity of each rela-
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tion (119) is Emin
c,d ≥ 0 when U ≥ 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coordinate links and diagonal links for g(u) = 0:
Emin

c = −Ut(m)
c + cet

(m)
c , Emin

d = ce(1−2t
(m)
c )+√

3(−1+2t
(a)
c )U

8 ,

coordinate links for g(u) = 1 and g
(u)
αβ = {0,1}:

Emin,1
c = (γu+2)U2−6(Ut

(a)
c −cet

(m)
c )

6 , Emin,2
c = (γu−1)U2+3(2cet

(m)
c −t

(a)
c

2
)

6 ,

diagonal links for g(u) = 1 and g
(u)
αβ = 0:

Emin
d = U(3

√
3(2t

(a)
c −1)−U(γu−1))−3ce(2t

(m)
c −1)

24 ,

or for g(u) = 1 and g
(u)
αβ = 1:

E
min,1
d = U(3

√
3(2t

(a)
c −1)+(4−γu)U)−3ce(1−2t

(m)
c )

24 ,

E
min,2
d = −(1+2γu)U2+3(2ce(1−2t

(m)
c )−(1−2t

(a)
c )2)

48 .

(119)

The equilibrium weights {Eq} of “moving” populations are all non-negative provided that

U ∈ [0,Un], Un = min{Un,c,Un,d}, where {Un,c > 0,Un,d > 0} are all suitable roots of equa-

tions {Emin
c,d (U) = 0}. When g(u) = 0, the relations (115) are valid for the d3Q15 (d = 3).

When the numerical diffusion is removed, the solution becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coordinate links for g(u) = 1 and g
(u)
αβ = {0,1}:

Un,c = 3t
(a)
c −

√
9t

(a)
c

2−6cet
(m)
c (2+γu)

γu+2 , 0 ≤ ce ≤ cbis
e ,

U 2
n,c = 3(t

(a)
c

2−2cet
(m)
c )

−1+γu
, cbis

e < ce < c(max)
e , cbis

e = t
(a)
c

2
(4−γu)

6t
(m)
c

, γu �= 1.

with diagonal links for g(u) = 1 and g
(u)
αβ = 0:

Un,d =
√

3
2

3(1−2t
(a)
c )−

√
9(1−2t

(a)
c )2−4ce(1−2t

(m)
c )(1−γu)

1−γu
, 0 ≤ ce ≤ c(max)

e ,

or for g(u) = 1 and g
(u)
αβ = 1:

Un,d =
√

3
2

3(1−2t
(a)
c )−

√
9(1−2t

(a)
c )2−4ce(1−2t

(m)
c )(4−γu)

(4−γu)
, 0 ≤ ce ≤ cbis

e ,

U 2
n,d = − 3((1−2t

(a)
c )2+2ce(−1+2t

(m)
c ))

1+2γu
, cbis

e ≤ ce ≤ c(max)
e , cbis

e = (−1+2t
(a)
c )2(5+γu)

9(1−2t
(m)
c )

.

(120)

Further analysis is similar as for the d2Q9 model. We specify the non-negativity conditions

when γu = 1 − 3t (m)
c and {t (a)

q = t (m)
q }, 1

3 ≤ t (a)
c ≤ 1

2 , then:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(u) = 0: U 2 ≤ c2
e

d
, d = 3:

coordinate links, g(u) = 1, g
(u)
αβ = {0,1}:

Un,c = −t
(m)
c +

√
t
(m)
c (2ce(−1+t

(m)
c )+t

(m)
c )

−1+t
(m)
c

, 0 ≤ ce ≤ t
(m)
c

2 (1 + t (m)
c ),

else U 2
n,c = 2ce − t (m)

c .

with diagonal links for g(u) = 1, g
(u)
αβ = 0:

Un,d =
√

3(1−2t
(m)
c )−

√
(−1+2t

(m)
c )(−3+(6+4ce)t

(m)
c )

2t
(m)
c

or for g(u) = 1, g
(u)
αβ = 1:

Un,d =
√

3(1−2t
(m)
c )−

√
(−1+2t

(m)
c )(−3+6t

(m)
c +4ce(1+t

(m)
c ))

2(1+t
(m)
c )

,

if 0 ≤ ce ≤ (−2+t
(m)
c )(−1+2t

(m)
c )

3 , else U 2
n,d = 2ce + 2t (m)

c − 1.

(121)

These relations are illustrated in Fig. 15. All non-negativity areas (121), together with con-
dition E0 ≥ 0, are confined inside the triangle (89), as for the d2Q9 schemes (Fig. 9). Again,
the non-negativity domain is larger when the cross-diffusion is removed. The solution for
U 2

n takes the following form for d3Q15(stan) (30):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(u) = 0 : U 2
n = c2

e

3 , 0 ≤ ce ≤ 3
7 .

g(u) = 1, g
(u)
αβ = 0 : U 2

n = (
√

3−√
3−4ce)

2

4 , 0 ≤ ce ≤ 5
12 ,

U 2
n = 3 − 7ce,

5
12 ≤ ce ≤ 3

7 .

g(u) = g
(u)
αβ = 1 : U 2

n = (
√

3−√
3−16ce)

2

64 , 0 ≤ ce ≤ 5
27 ,

U 2
n = 2ce − 1

3 , 5
27 ≤ ce ≤ 10

27 , U 2
n = 3 − 7ce,

10
27 ≤ ce ≤ 3

7 .

(122)

This solution is plotted in Figs. 7 and 16.

Appendix C: Spectrum of the d2Q9 and d3Q15 OTRT Schemes

The Sects. C.1.1 and C.2.1 apply Theorem 2.3.1 to derive sufficient stability conditions, with
a focus on the equilibrium weights where these conditions are also necessary. Sections C.1.2
and C.2.2 derive necessary and sufficient stability conditions with the help of direct analy-
sis of the condition |�(k)| = 1 for the OTRT sub-class. All these results are restricted to
isotropic symmetric weights {E(m)

q }, when {E(a)
q = 0}.

C.1 The d2Q9 OTRT Schemes: Necessary and Sufficient Stability Conditions

C.1.1 The d2Q9 OTRT Model: Sufficient Stability Conditions

We apply condition (49-2) from Theorem 2.3.1 to build sufficient stability conditions for the
d2Q9 scheme with E(a)

q = 0:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ss = ∑Qm

q=1
(E−

q )2

E+
q

≤ 1, where Ss = 12t (a)
c

2
Sc − 3(1−2t

(a)
c )2

2 Sd,

with

Sc = U2
x

6cet
(m)
c +g(u)((2+γu)U2

x +(−1+γu)U2
y )

+ U2
y

6cet
(m)
c +g(u)((2+γu)U2

y +(−1+γu)U2
x )

Sd = (Ux+Uy)2

3ce(−1+2t
(m)
c )+g(u)((−1+γu)(U2

x +U2
y )−3g

(u)
xy UxUy)

+ (Ux−Uy)2

3ce(−1+2t
(m)
c )+g(u)((−1+γu)(U2

x +U2
y )+3g

(u)
xy UxUy)

.

(123)

Here, Sc and Sd are the total respective contributions from the coordinate and diagonal
links. Next step consists in seeking for maximum: S(max)

s = maxn Ss(U(n)) (we replace:

cosψ → 1−n2

1+n2 , sinψ → 2n

1+n2 , with n = tan ψ

2 for U = U(cosψ, sinψ)). The stability bound-

ary U 2(ce) satisfies equation S(max)
s = 1 provided that {E+

q > 0} (relations (85) and (86))
and E0 ≥ 0 (relation (33)).

With Numerical Diffusion g(u) = 0 In such a case, all {E+
q > 0} when t (m)

c �= {0, 1
2 } and

E0 ≥ 0 when ce ∈ [0, c(0)
e ]. Then condition (123) prescribes the following stable area:

g(u) = 0: U 2 ≤ ksce, ks = 1 − 2t (m)
c

1 − 2t
(a)
c (2 − t

(a)
c

t
(m)
c

)

, t (m)
c /∈

{
0,

1

2

}
. (124)

This sufficient condition is weaker than the non-negativity conditions (115), in agreement
with the predictions of Lemma 2.3.2. When the mass and advection weights take the limit
values, t (a)

c = t (m)
c ∈ {0, 1

2 }, the theorem still applies excluding either Sc or Sd , respectively,
from Ss . These models are five populations schemes (a “rotated” d2Q5 and the d2Q5, re-
spectively) and in both cases, U 2 ≤ ce is the sufficient condition. The theorem cannot be
applied when t (m)

c ∈ {0, 1
2 } but {t (a)

q �= t (m)
q }. Finally, the necessary (93) and sufficient (124)

conditions coincide only if the mass and velocity weights are equal:

g(u) = 0, 0 ≤ t (m)
c = t (a)

c ≤ 1

2
: U 2 ≤ ce, 0 ≤ ce ≤ c(0)

e . (125)

Remark C.1.1.A Theorem 2.3.1 predicts the necessary and sufficient conditions for equal
mass and velocity weights when g(u) = 0 but does not rule out ks = 1 for other combinations
of weights.

Remark C.1.1.B When U ≡ 0, the non-negativity of the immobile weight, ce ∈ [0, c(0)
e ], is

sufficient from both Theorems 2.3.1 and 2.4. Proposition C.1.2.1 extends the stable interval
[0, c(0)

e = 1

1+2t
(m)
c

] to the larger one, ce ∈ [0, c(max)
e ], where c(max)

e = min{1, 1

4t
(m)
c

}, as predicted

by the necessary diffusion conditions (93). Then E0(ce) ≤ 0 when ce ∈ [c(0)
e , c(max)

e ].

Remark C.1.1.C In the presence of the advection, and when {t (a)
q = t (m)

q }, Proposi-
tion C.1.2.2 extends the necessary and sufficient condition (125) to the larger inter-
val ce ∈ [0, c(max)

e ]. Then E0(ce,U
2) is negative inside the stable area U 2 ≤ ce when

ce ∈ [c(0)
e , c(max)

e ].

Remark C.1.1.D Proposition C.1.2.3 extends Proposition C.1.2.2 for different weights
{t (m)

q ≤ t (a)
q } when they lie in the interval [0, 1

4 ].
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Without Diagonal Numerical Diffusion, g(u) = 1 and g(u)
xy = 0 Assuming E0 ≥ 0, then ei-

ther the necessary advection-dominant condition (95) (when g(u)
xy = 0) or the non-negativity

condition {E+
q > 0} (when g(u)

xy = 1) reduces the stable area to the triangle (89). When

g(u)
xy = 0, relation (123) reaches its maximum for the diagonal velocity Ux = Uy = U

√
2

2 ,
then the stability boundary U 2(ce) satisfies the inequality:

3(1 − 2t (a)
c )2U 2

3ce(1 − 2t
(m)
c ) + (1 − γu)U 2

+ 24t (a)
c

2
U 2

12cet
(m)
c + (1 + 2γu)U 2

≤ 1. (126)

The above inequality gives the stability boundary U 2 = ksce where ks depends on all three
weights. The best value ks = 2 is reached when t (a)

c is related to the two other weights by:

t (a)
c = 1 + 2(γu + 3t (m)

c )

12
or, equivalently, t (u)

c = 2t (a)
c − t (m)

c . (127)

The condition U 2 ≤ 2ce is sufficient for the non-negativity of all {E+
q } when γu = γ (m)

u

(cf. relation (87)). This choice reduces relation (127) to t (a)
c = 1

4 . Then the advection line
U 2 = 2ce is sufficient when t (a)

c = 1
4 and g(u) = 1, up to its intersection with the E0-n-line.

In this case, the predicted sufficient area coincides with the non-negativity triangle {E+
q ≥ 0},

given by conditions (89) and illustrated in Fig. 9.

Remark C.1.1.E The non-negativity domain (89) is also sufficient for case g(u)
xy g(u) = 1 when

t (a)
c = 1

4 . However, in this and many other cases, the conditions derived with the assumptions
{E+

q > 0} and E0 ≥ 0 are unnecessarily restrictive. We then proceed with the exact study of
|�|.

C.1.2 The d2Q9 OTRT Schemes: Necessary and Sufficient Stability Conditions

The characteristic equation of the OTRT sub-class is given by relation (44) with (45). Its
stability properties are defined taking there p = 0, then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = �r − i�i,

where
�r = 1 − ce�0 + g(u)(U 2

x �x + U 2
y �y − g(u)

xy UxUy sinkx sinky),

�0 = (1 − cos kx cos ky) + 2t (m)
c (1 − coskx)(1 − cos ky),

�x = 1
3 (−(2 + γu)(1 − cos kx) + (γu − 1)(1 − cos kx) cos ky),

�y = 1
3 (−(2 + γu)(1 − cos ky) + (γu − 1)(1 − cos ky) cos kx),

�i = (2t (a)
c + (1 − 2t (a)

c ) cos ky)Ux sinkx + (2t (a)
c + (1 − 2t (a)

c ) cos kx)Uy sinky.

(128)

The stability conditions which are both necessary and sufficient need, first, to maximize

|�(U,ce)|2 over three variables: {mx, my} and n (we use substitutions cos[kα] → 1−m2
α

1+m2
α

,

sin[kα] → 2mα

1+m2
α

and cosψ → 1−n2

1+n2 , sinψ → 2n

1+n2 for U = U(cosψ, sinψ), with mα =
tan kα

2 and n = tan ψ

2 ), then to derive the solution U 2(ce) from stability boundary |�|2 = 1.

Proposition C.1.2.1 When U = 0, then |�|2 = (1 − ce�0)
2 ≤ 1 provided that ce ≤ c(max)

e =
min{1, 1

4t
(m)
c

}, 0 ≤ t (m)
c ≤ 1

2 .
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Proof When U = 0, � = 1−ce�0 and 1−|�|2 = ce�0(2−ce�0). Then |�|2 ≤ 1 iff ce ≥ 0,
�0 ≥ 0, and (2 − ce�0) ≥ 0 for all mx and my . In fact, using

�0 = 2(m2
x + m2

y + 4t (m)
c m2

xm
2
y)

(1 + m2
x)(1 + m2

y)
, (129)

2 − ce�0 = 2(1 + (1 − ce)(m
2
x + m2

y) + (1 − 4cet
(m)
c )m2

xm
2
y)

(1 + m2
x)(1 + m2

y)
, (130)

these conditions are fulfilled iff ce ≤ c(max)
e = min{1, 1

4t
(m)
c

} and 0 ≤ t (m)
c ≤ 1

2 , �

Proposition C.1.2.2 When g(u) = 0 and {t (m)
q = t (a)

q }, then |�|2 ≤ 1 provided that 0 ≤ U 2 ≤
ce and 0 ≤ ce ≤ c(max)

e = min{1, 1

4t
(m)
c

}.

Proof When g(u) = 0 then |�|2 = (1 − ce�0)
2 + �2

i . Then, with the help of the Cauchy-
Schwartz inequality:

�2
i ≤ (U 2

x + U 2
y )w2

i , where w2
i = (2t (a)

c (1 − cos ky) + cos ky)
2 sin2 kx

+ (2t (a)
c (1 − cos kx) + coskx)

2 sin2 ky. (131)

We substitute the assumed stability boundary: (U 2
x + U 2

y ) ≤ ce , then:

|�|2 ≤ W 2(ce, t
(m)
c , t (a)

c ,m2
x,m

2
y),W

2 = (1 − ce�0)
2 + cew

2
i ,

where

w2
i = 4(m2

x(1 − (1 − 4t (a)
c )m2

y)
2 + m2

y(1 − (1 − 4t (a)
c )m2

x)
2)

(1 + m2
x)

2(1 + m2
y)

2
. (132)

We then confirm that W 2 ≤ 1 when 0 ≤ t (a)
c = t (m)

c ≤ 1
2 and ce ∈ [0, c(max)

e ]. �

Proposition C.1.2.3 When g(u) = 0 and 0 ≤ t (m)
q ≤ t (a)

q ≤ 1
4 , then |�|2 = ((1 − ce�0)

2 +
�2

i ) ≤ 1 provided that 0 ≤ U 2 ≤ ce and 0 ≤ ce ≤ c(max)
e = 1.

Proof We again use the Cauchy-Schwartz estimate W 2 (relation (132)) and confirm that
maxmx,my W 2 = 1 when all pre-conditions are set. �

Proposition C.1.2.4 When t (a)
c = 1

4 (t (a)
d = 1

8 ) and 0 ≤ ce ≤ c(max)
e = min{1, 1

4t
(m)
c

} then the

necessary and sufficient conditions are given by relations (133), for any t (m)
c ∈ [0, 1

2 ] and
any γu ∈ [− 1

2 ,1]:
⎧
⎨

⎩

g(u) = 0 : U 2 ≤ U 2
a,0 = ce.

g(u) = 1, g(u)
xy = 0 : U 2 ≤ min{U 2

a,1 = 2ce,U
2
d,1,U

2
d,2}.

g(u) = 1, g(u)
xy = 1 : U 2 ≤ min{U 2

d,1,U
2
d,2}.

(133)

Here, U 2
d,1 and U 2

d,2 are the diffusion-dominant conditions (94).
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Proof (a) When g(u) = 0, we confirm that W 2 ≤ 1 for any t (m)
c ∈ [0, 1

2 ] when ce ∈ [0, c(max)
e ]

provided that t (a)
c = 1

4 . (b) When g(u) = 1, we consider exact solution (128) on the as-
sumed stability boundaries and confirm, with the help of exact maximization routines [36]
that |�|2 ≤ 1 for the limit cases and several intermediate cases, e.g., t (m)

c = {0, 1
4 , 1

2 },
γu = −{ 1

2 ,0,1}. We either keep ce as a variable, or use the (dense) grid of ce values in
the available interval ce ∈ [0, c(max)

e ] (this accelerates the maximization procedure).
This proposition first extends Proposition C.1.2.3 for the second part of the available in-

terval, t (m)
c ∈ [ 1

4 , 1
2 ], but uniquely for t (a)

c = 1
4 . Second, the proposition extends the sufficient

conditions predicted by Theorem 2.3.1 for “uniform” weights t (a)
c = t (m)

c = 1
4 when g(u) = 1

and g
(u)
αβ = 0 to the whole interval t (m)

c ∈ [0, 1
2 ], again, provided that t (a)

c = 1
4 . Third, the sta-

bility condition for g(u)
xy g(u) = 1 predicts the “unconditional” stability: 0 ≤ U 2(ce = 0) ≤ 1

for t (a)
c = 1

4 . The principal necessary conditions (93) and (95) are then sufficient. Hence,
the d1Q3 model and d2Q9 schemes with t (a)

c = 1
4 (for any t (m)

c ∈ [0, 1
4 ] and any γu) have

the same stability conditions. This proposition is illustrated in Fig. 10 when γu = γ (m)
u , t (m)

c

varies and in Figs. 11 and 13 (right diagram) for the “uniform” weights. �

Proposition C.1.2.5 When g(u) = 0, or g(u) = 1 with g(u)
xy = 0, and the equilibrium weights

are related by conditions (30) (d2Q9(stan)), then the necessary stability conditions (99) are
also sufficient. When g(u)

xy g(u) = 1, the sufficient condition is U 2 ≤ 3
4 when ce ∈ [0, 1

4 ], and

U 2 ≤ min{U 2
d,1,U

2
d,2} when ce ∈ [ 1

4 , c(max)
e ], c(max)

e = 3
4 .

Indeed, the case g(u) = 0 is already addressed by Proposition C.1.2.2. When g(u) = 1, the
proposition is verified along the same lines as Proposition C.1.2.4. This proposition expands
the sufficient conditions predicted by Theorem 2.3.1 towards the necessary conditions and
gives the (sufficient) stability boundary for g(u)

xy g(u) = 1. In this last case, U 2 ≤ 3
4 is nec-

essary only for ce = 0. The stability boundaries of the d2Q9(stan) scheme are confirmed by
independent eigenmode analysis in Fig. 12 and illustrated in Fig. 13 (left diagram).

Proposition C.1.2.6 For “standard” weights t (a)
c = t (m)

c = 1
3 , (a) the necessary stability

conditions (95) are sufficient for any γu when g(u) = 1, g(u)
xy = 0, (b) when g(u)

xy g(u) = 1 then

U 2 = 4ce , 0 ≤ ce ≤ 1
5 , and U 2 = 1 − ce , 1

5 ≤ ce ≤ 3
4 , is sufficient for γu = − 1

2 , (c) when
g(u)

xy g(u) = 1, then U 2 = 11
12 (1 − 3ce) + 5

3ce , 0 ≤ ce ≤ 1
3 , and U 2 = 1 − 4

3ce , 1
3 ≤ ce ≤ 3

4 , is
sufficient for γu = 1.

This proposition extends the previous one (where γu = 0) for all γu when g(u) = 1, and
proposes the sufficient boundaries for two limit cases, γu = − 1

2 and γu = 1. The proposition
is verified similarly as Proposition C.1.2.4.

Proposition C.1.2.7 For the d2Q9(diag) model (100): t (a)
c = t (m)

c = 0 with γu = γ (m)
u = 1,

then (a) the necessary stability conditions (95): U 2 ≤ 2ce when ce ∈ [0, 1
3 ] and U 2 ≤ 1 − ce

when ce ∈ [ 1
3 ,1], are sufficient when g(u) = 1, g(u)

xy = 0. (b) U 2 ≤ 4
5 when ce ∈ [0, 1

5 ] and

U 2 ≤ 1 − ce when ce ∈ [ 1
5 ,1] is sufficient when g(u)

xy g(u) = 1. The proposition is verified
similarly as Proposition C.1.2.4 and confirmed in Fig. 14.
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C.2 The d3Q15 OTRT Schemes: Necessary and Sufficient Stability Conditions

C.2.1 The d3Q15 OTRT Model: Sufficient Stability Conditions

With Numerical Diffusion, g(u) = 0 We consider the sufficient conditions (49). When
g(u) = 0, they result in relation (124), the same as for the d2Q9 schemes, where c(max)

e

obeys (103). This condition is stronger than the necessary condition (101) except for equal
mass/velocity weights, {t (m)

q = t (a)
q }, where they coincide.

Without Numerical Diffusion, g(u) = 1 The non-negativity condition (49-1): {E+
q ≥ 0} is

set by relations (85) and (86), as for the d2Q9 model. Then we examine condition (49-2):

Ss = ∑Qm

q=1
(E−

q )2

E+
q

≤ 1 for equilibrium (24). The diagonal velocity U = {Uα = U√
3
} gives:

(1 − 2t (a)
c )2U 2

3ce(1 − 2t
(m)
c ) + (1 − γu)U 2

+ 4t (a)
c

2
U 2

(6cet
(m)
c + γuU 2)

≤ 1

9
. (134)

The best possible advection boundary: U 2 = U 2
a,2 = ksce with ks = 3

2 is obtained only if t (a)
c

is related to t (m)
c and γu by:

t (a)
c = 4t (m)

c + γu

6
or, equivalently, t (u)

c = 3t (a)
c − 2t (m)

c . (135)

When γu = γ (m)
u (relation (87)) then ks = 3

2 for t (a)
c = 1+t

(m)
c

6 and the diagonal velocity gives
the maximum for Ss . The sufficient (stable) triangle is then bounded by the advection line
U 2 = ksce and the E0-n-line. Equal mass/velocity weights {t (a)

q = t (m)
q } then result in the

“uniform” weights (106).

C.2.2 The d3Q15 OTRT Schemes: Necessary and Sufficient Stability Conditions

We consider the root � of the OTRT characteristic equation (44) for p = 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = �r − i�i, where �r = 1 − ce�0 + g(u)( 1
3

∑
α={x,y,z} U

2
α�α − �xyz),

�0 = 2t (m)
c (3 − cos kx − cos ky − cos kz) + (1 − 2t (m)

c )(1 − cos kx cos ky cos kz),

�α = (3 cos[kα] − 1 − 2γu)

+ (γu − 1)(cos[kα] + cos[kβ ] + cos[kγ ] − cos[kα] cos[kβ ] cos[kγ ]), α �= β �= γ.

�xyz = ∑
α �=β �=γ g

(u)
αβ sinkα sinkβ cos kγ UαUβ,

�i = ∑
α �=β �=γ sinkαUα(sinkβ cos kγ (1 − 2t (a)

c ) + 2t (a)
c ).

(136)

Proposition C.2.2.1 When t (a)
c = 1

4 then (a) the necessary conditions (105) are sufficient;

(b) when g
(u)
αβ g(u) = 1 and γu = 1, then the necessary and sufficient condition is U 2 ≤ U 2

d

when ce ∈ [0, c(0)
e ].

This proposition predicts U(ce = 0) ∈ [0,1] when t (a) = 1
4 but only for γu = 1 (t (u)

c = 1
2 ),

when the necessary diffusion-dominant condition U 2 ≤ U 2
d,2 = U 2

p,c (relation (105)) van-
ishes. This proposition is illustrated in Fig. 17. It is also confirmed by the eigenmode analy-
sis, in particular for t (m)

c = 0.
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Proposition C.2.2.2 For d3Q15(stan) (30) and d3Q15(unif ) (106), the necessary condi-
tions (105) are also sufficient. Replacing γu = 0 with γu = 1 for d3Q15(stan), its stability
boundary U 2 ≤ 2ce improves at least as U 2 ≤ 4ce when g

(u)
αβ g(u) = 1. This proposition is

confirmed by the eigenmode analysis in Figs. 15 and 16.

The two propositions are confirmed computing |�|2 on the assumed stability boundary
U 2(ce) with a dense variation of U and k in three dimensions (605 points) and confirmed by
independent numerical analysis of the spectrum of the evolution equation (38).
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